Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Neurosci ; 44(5)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37989593

ABSTRACT

Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.


Subject(s)
Calcium , Neocortex , Male , Female , Mice , Animals , Calcium/physiology , Neurons/physiology , Dendrites/physiology , Pyramidal Cells/physiology , Neocortex/physiology
2.
Proc Natl Acad Sci U S A ; 119(45): e2206704119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36322739

ABSTRACT

New neurons are continuously generated in the subgranular zone of the dentate gyrus throughout adulthood. These new neurons gradually integrate into hippocampal circuits, forming new naive synapses. Viewed from this perspective, these new neurons may represent a significant source of "wiring" noise in hippocampal networks. In machine learning, such noise injection is commonly used as a regularization technique. Regularization techniques help prevent overfitting training data and allow models to generalize learning to new, unseen data. Using a computational modeling approach, here we ask whether a neurogenesis-like process similarly acts as a regularizer, facilitating generalization in a category learning task. In a convolutional neural network (CNN) trained on the CIFAR-10 object recognition dataset, we modeled neurogenesis as a replacement/turnover mechanism, where weights for a randomly chosen small subset of hidden layer neurons were reinitialized to new values as the model learned to categorize 10 different classes of objects. We found that neurogenesis enhanced generalization on unseen test data compared to networks with no neurogenesis. Moreover, neurogenic networks either outperformed or performed similarly to networks with conventional noise injection (i.e., dropout, weight decay, and neural noise). These results suggest that neurogenesis can enhance generalization in hippocampal learning through noise injection, expanding on the roles that neurogenesis may have in cognition.


Subject(s)
Memory , Neurogenesis , Memory/physiology , Neurogenesis/physiology , Hippocampus/physiology , Neurons/physiology , Synapses , Dentate Gyrus/physiology
3.
BMC Biol ; 18(1): 7, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31937327

ABSTRACT

BACKGROUND: Abnormal accumulation of amyloid ß1-42 oligomers (AßO1-42), a hallmark of Alzheimer's disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AßO1-42 affects PV and SST interneuron circuits is unclear. Through optogenetic manipulation of PV and SST interneurons and computational modeling of the hippocampal neural circuits, we dissected the contributions of PV and SST interneuron circuit dysfunctions on AßO1-42-induced impairments of hippocampal theta-nested gamma oscillations and oscillation-induced LTP. RESULTS: Targeted whole-cell patch-clamp recordings and optogenetic manipulations of PV and SST interneurons during in vivo-like, optogenetically induced theta-nested gamma oscillations in vitro revealed that AßO1-42 causes synapse-specific dysfunction in PV and SST interneurons. AßO1-42 selectively disrupted CA1 pyramidal cells (PC)-to-PV interneuron and PV-to-PC synapses to impair theta-nested gamma oscillogenesis. In contrast, while having no effect on PC-to-SST or SST-to-PC synapses, AßO1-42 selectively disrupted SST interneuron-mediated disinhibition to CA1 PC to impair theta-nested gamma oscillation-induced spike timing-dependent LTP (tLTP). Such AßO1-42-induced impairments of gamma oscillogenesis and oscillation-induced tLTP were fully restored by optogenetic activation of PV and SST interneurons, respectively, further supporting synapse-specific dysfunctions in PV and SST interneurons. Finally, computational modeling of hippocampal neural circuits including CA1 PC, PV, and SST interneurons confirmed the experimental observations and further revealed distinct functional roles of PV and SST interneurons in theta-nested gamma oscillations and tLTP induction. CONCLUSIONS: Our results reveal that AßO1-42 causes synapse-specific dysfunctions in PV and SST interneurons and that optogenetic modulations of these interneurons present potential therapeutic targets for restoring hippocampal network oscillations and synaptic plasticity impairments in Alzheimer's disease.


Subject(s)
Action Potentials/physiology , Amyloid beta-Peptides/adverse effects , Hippocampus , Interneurons/physiology , Long-Term Potentiation/physiology , Parvalbumins/metabolism , Peptide Fragments/adverse effects , Somatostatin/metabolism , Animals , Mice , Optogenetics
4.
Learn Mem ; 27(5): 201-208, 2020 05.
Article in English | MEDLINE | ID: mdl-32295840

ABSTRACT

Behavioral flexibility is important in a changing environment. Previous research suggests that systems consolidation, a long-term poststorage process that alters memory traces, may reduce behavioral flexibility. However, exactly how systems consolidation affects flexibility is unknown. Here, we tested how systems consolidation affects: (1) flexibility in response to value changes and (2) flexibility in response to changes in the optimal sequence of actions. Mice were trained to obtain food rewards in a Y-maze by switching nose pokes between three arms. During initial training, all arms were rewarded and mice simply had to switch arms in order to maximize rewards. Then, after either a 1 or 28 d delay, we either devalued one arm, or we reinforced a specific sequence of pokes. We found that after a 1 d delay mice adapted relatively easily to the changes. In contrast, mice given a 28 d delay struggled to adapt, especially for changes to the optimal sequence of actions. Immediate early gene imaging suggested that the 28 d mice were less reliant on their hippocampus and more reliant on their medial prefrontal cortex. These data suggest that systems consolidation reduces behavioral flexibility, particularly for changes to the optimal sequence of actions.


Subject(s)
Behavior, Animal/physiology , Hippocampus/physiology , Memory Consolidation/physiology , Prefrontal Cortex/physiology , Animals , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Time Factors
5.
PLoS Comput Biol ; 14(8): e1006315, 2018 08.
Article in English | MEDLINE | ID: mdl-30067746

ABSTRACT

Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment ("relevance"), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to "gate" both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.


Subject(s)
Learning/physiology , Neuronal Plasticity/physiology , Schizophrenia/physiopathology , Action Potentials/physiology , Interneurons/physiology , Models, Biological , Models, Neurological , Models, Theoretical , Nerve Net/physiology , Neural Inhibition/physiology , Neural Networks, Computer
6.
7.
J Neurosci ; 36(48): 12228-12242, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27903731

ABSTRACT

Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. SIGNIFICANCE STATEMENT: As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales.


Subject(s)
Hippocampus/physiology , Memory, Episodic , Memory, Short-Term/physiology , Mental Recall/physiology , Models, Neurological , Reward , Adaptation, Physiological/physiology , Animals , Choice Behavior/physiology , Computer Simulation , Humans
8.
Curr Opin Biotechnol ; 86: 103070, 2024 04.
Article in English | MEDLINE | ID: mdl-38354452

ABSTRACT

Protein nanoparticles offer a highly tunable platform for engineering multifunctional drug delivery vehicles that can improve drug efficacy and reduce off-target effects. While many protein nanoparticles have demonstrated the ability to tolerate genetic and posttranslational modifications for drug delivery applications, this review will focus on three protein nanoparticles of increasing size. Each protein nanoparticle possesses distinct properties such as highly tunable stability, capacity for splitting or fusing subunits for modular surface decoration, and well-characterized conformational changes with impressive capacity for large protein cargos. While many of the genetic and posttranslational modifications leverage these protein nanoparticle's properties, the shared techniques highlight engineering approaches that have been generalized across many protein nanoparticle platforms.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Delivery Systems/methods
9.
Cell Rep ; 43(6): 114244, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38796851

ABSTRACT

Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.


Subject(s)
Learning , Neurons , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Learning/physiology , Mice , Neurons/physiology , Male , Mice, Inbred C57BL , Behavior, Animal/physiology , Female
10.
Neuron ; 112(9): 1487-1497.e6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447576

ABSTRACT

Little is understood about how engrams, sparse groups of neurons that store memories, are formed endogenously. Here, we combined calcium imaging, activity tagging, and optogenetics to examine the role of neuronal excitability and pre-existing functional connectivity on the allocation of mouse cornu ammonis area 1 (CA1) hippocampal neurons to an engram ensemble supporting a contextual threat memory. Engram neurons (high activity during recall or TRAP2-tagged during training) were more active than non-engram neurons 3 h (but not 24 h to 5 days) before training. Consistent with this, optogenetically inhibiting scFLARE2-tagged neurons active in homecage 3 h, but not 24 h, before conditioning disrupted memory retrieval, indicating that neurons with higher pre-training excitability were allocated to the engram. We also observed stable pre-configured functionally connected sub-ensembles of neurons whose activity cycled over days. Sub-ensembles that were more active before training were allocated to the engram, and their functional connectivity increased at training. Therefore, both neuronal excitability and pre-configured functional connectivity mediate allocation to an engram ensemble.


Subject(s)
Fear , Neurons , Optogenetics , Animals , Mice , Neurons/physiology , Neurons/metabolism , Fear/physiology , CA1 Region, Hippocampal/physiology , Hippocampus/physiology , Male , Mice, Inbred C57BL , Conditioning, Classical/physiology , Memory/physiology
11.
Hippocampus ; 23(3): 207-12, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23389924

ABSTRACT

Memories serve to establish some permanence to our inner lives despite the fleeting nature of subjective experience. Most neurobiological theories of memory assume that this mental permanence reflects an underlying cellular permanence. Namely, it is assumed that the cellular changes which first occur to store a memory are perpetuated for as long as the memory is stored. But is that really the case? In an opinion piece in this issue of Hippocampus, Aryeh Routtenberg raises the provocative idea that the subjective sense of memory persistence is not in fact a result of persistence at the cellular level, rather, that "supple synapses" and multiple "evanescent networks" that are forever changing are responsible for our memories. On one level, his proposal could be construed as a radical challenge to some of our most fundamental theories of the neurobiology of memory, including Donald Hebb's proposal that memories are stored by networks that strengthen their connections to increase the likelihood of the same activity patterns being recreated at a later date. However, it could also be seen as a moderating call, a call for a greater acknowledgement of the dynamic, stochastic, and distributed nature of neural networks. In this response to Routtenberg's article, we attempt to provide a clarification of the dividing line between these two interpretations of his argument, and in doing so, we provide some overview of the empirical evidence that bears on this subject. We argue that the data that exists to date favors the more moderate interpretation: that memory storage involves a process in which activity patterns are made more likely to reoccur, but that an under-appreciated reality is that mnemonic traces may continue to change and evolve over time.


Subject(s)
Brain/physiology , Memory/physiology , Animals , Humans
12.
Sci Data ; 10(1): 287, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198203

ABSTRACT

The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected through the Allen Institute Mindscope's OpenScope program that addresses this need. This dataset comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, enabling analyses of how their responses change over time. This dataset allows neuroscientists to explore the differences between apical and somatic processing and plasticity.


Subject(s)
Pyramidal Cells , Visual Cortex , Animals , Mice , Cell Body , Dendrites/physiology , Neurons , Pyramidal Cells/physiology , Visual Cortex/physiology
13.
Front Comput Neurosci ; 16: 757244, 2022.
Article in English | MEDLINE | ID: mdl-35399916

ABSTRACT

Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limitations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.

14.
Neuroscience ; 489: 200-215, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34358629

ABSTRACT

Neurons are very complicated computational devices, incorporating numerous non-linear processes, particularly in their dendrites. Biophysical models capture these processes directly by explicitly modelling physiological variables, such as ion channels, current flow, membrane capacitance, etc. However, another option for capturing the complexities of real neural computation is to use cascade models, which treat individual neurons as a cascade of linear and non-linear operations, akin to a multi-layer artificial neural network. Recent research has shown that cascade models can capture single-cell computation well, but there are still a number of sub-cellular, regenerative dendritic phenomena that they cannot capture, such as the interaction between sodium, calcium, and NMDA spikes in different compartments. Here, we propose that it is possible to capture these additional phenomena using parallel, recurrent cascade models, wherein an individual neuron is modelled as a cascade of parallel linear and non-linear operations that can be connected recurrently, akin to a multi-layer, recurrent, artificial neural network. Given their tractable mathematical structure, we show that neuron models expressed in terms of parallel recurrent cascades can themselves be integrated into multi-layered artificial neural networks and trained to perform complex tasks. We go on to discuss potential implications and uses of these models for artificial intelligence. Overall, we argue that parallel, recurrent cascade models provide an important, unifying tool for capturing single-cell computation and exploring the algorithmic implications of physiological phenomena.


Subject(s)
Artificial Intelligence , Dendrites , Biophysics , Dendrites/physiology , Models, Neurological , Neural Networks, Computer , Neurons/physiology
15.
Patterns (N Y) ; 2(5): 100268, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34027504

ABSTRACT

What is the purpose of dreaming? Many scientists have postulated a role for dreaming in learning, often with the aim of improving generative models. In this issue of Patterns, Erik Hoel proposes a novel hypothesis, namely, that dreaming provides a means to reduce overfitting. This hypothesis is interesting both for neuroscience and for the development of new machine-learning systems.

16.
Nat Neurosci ; 24(7): 1010-1019, 2021 07.
Article in English | MEDLINE | ID: mdl-33986551

ABSTRACT

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well established that it depends on pre- and postsynaptic activity. However, models that rely solely on pre- and postsynaptic activity for synaptic changes have, so far, not been able to account for learning complex tasks that demand credit assignment in hierarchical networks. Here we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then pyramidal neurons higher in a hierarchical circuit can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.


Subject(s)
Deep Learning , Learning/physiology , Models, Neurological , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Animals , Humans
17.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34503967

ABSTRACT

Spontaneous recognition memory tasks are widely used to assess cognitive function in rodents and have become commonplace in the characterization of rodent models of neurodegenerative, neuropsychiatric and neurodevelopmental disorders. Leveraging an animal's innate preference for novelty, these tasks use object exploration to capture the what, where and when components of recognition memory. Choosing and optimizing objects is a key feature when designing recognition memory tasks. Although the range of objects used in these tasks varies extensively across studies, object features can bias exploration, influence task difficulty and alter brain circuit recruitment. Here, we discuss the advantages of using 3D-printed objects in rodent spontaneous recognition memory tasks. We provide strategies for optimizing their design and usage, and offer a repository of tested, open-source designs for use with commonly used rodent species. The easy accessibility, low-cost, renewability and flexibility of 3D-printed open-source designs make this approach an important step toward improving rigor and reproducibility in rodent spontaneous recognition memory tasks.


Subject(s)
Recognition, Psychology , Rodentia , Animals , Printing, Three-Dimensional , Reproducibility of Results
18.
Commun Biol ; 4(1): 935, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354206

ABSTRACT

Neurons can carry information with both the synchrony and rate of their spikes. However, it is unknown whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, or vice versa. Here, we address this question using patterned optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit signal using either the synchrony or rate of activity. We then examined the mutual information between this signal and the interneuron responses. We found that for a synchrony encoding, FS interneurons carried more information in the first five milliseconds, while both interneuron subtypes carried more information than excitatory neurons in later responses. For a rate encoding, we found that RS interneurons carried more information after several milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex have distinct sensitivities to synchrony versus rate codes.


Subject(s)
Interneurons/physiology , Neocortex/physiology , Somatosensory Cortex/physiology , Animals , Mice , Mice, Transgenic , Optogenetics , Patch-Clamp Techniques
19.
Nat Hum Behav ; 4(8): 866-877, 2020 08.
Article in English | MEDLINE | ID: mdl-32514041

ABSTRACT

Forgetting involves the loss of information over time; however, we know little about what form this information loss takes. Do memories become less precise over time, or do they instead become less accessible? Here we assessed memory for word-location associations across four days, testing whether forgetting involves losses in precision versus accessibility and whether such losses are modulated by learning a generalizable pattern. We show that forgetting involves losses in memory accessibility with no changes in memory precision. When participants learned a set of related word-location associations that conformed to a general pattern, we saw a strong trade-off; accessibility was enhanced, whereas precision was reduced. However, this trade-off did not appear to be modulated by time or confer a long-term increase in the total amount of information maintained in memory. Our results place theoretical constraints on how models of forgetting and generalization account for time-dependent memory processes. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 4 June 2019. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.c.4368464.v1 .


Subject(s)
Memory Disorders , Memory , Mental Recall , Adolescent , Adult , Female , Humans , Male , Models, Psychological , Retention, Psychology , Young Adult
20.
Sci Adv ; 6(17): eaay5333, 2020 04.
Article in English | MEDLINE | ID: mdl-32426459

ABSTRACT

Synchronization of precise spike times across multiple neurons carries information about sensory stimuli. Inhibitory interneurons are suggested to promote this synchronization, but it is unclear whether distinct interneuron subtypes provide different contributions. To test this, we examined single-unit recordings from barrel cortex in vivo and used optogenetics to determine the contribution of parvalbumin (PV)- and somatostatin (SST)-positive interneurons to the synchronization of spike times across cortical layers. We found that PV interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are low (<12 Hz), whereas SST interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are high (>12 Hz). Furthermore, using a computational model, we demonstrate that these effects can be explained by PV and SST interneurons having preferential contributions to feedforward and feedback inhibition, respectively. Our findings demonstrate that distinct subtypes of inhibitory interneurons have frequency-selective roles in the spatiotemporal synchronization of precise spike times.

SELECTION OF CITATIONS
SEARCH DETAIL