Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Biol Chem ; 299(6): 104816, 2023 06.
Article in English | MEDLINE | ID: mdl-37178920

ABSTRACT

Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second-line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild-type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to the control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model but also in healthy human islets and islets from HI patients.


Subject(s)
Hyperinsulinism , Receptors, Somatomedin , Animals , Child , Humans , Infant , Mice , Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Glucose/metabolism , Hyperinsulinism/drug therapy , Hypoglycemia/metabolism , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Mutation , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, Somatomedin/agonists
2.
Bioorg Med Chem Lett ; 71: 128807, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35605837

ABSTRACT

SST5 receptor activation potently inhibits insulin secretion from pancreatic ß-cells, and an orally available nonpeptide selective SST5 agonist may be used to effectively manage the blood glucose levels of congenital HI patients to avoid severe hypoglycemia. Our medicinal chemistry efforts have led to the discovery of 4-(3-aminopyrrolidinyl)-3-aryl-5-(benzimidazol-2-yl)-pyridine analogs as potent SST5 agonists. This class of molecules exhibits excellent human SST5 potency and selectivity against SST1, SST2, SST3 and SST4 receptors. Leading compound 3-{4-[(3S)-3-aminopyrrolidin-1-yl]-5-(4-methyl-1H-1,3-benzodiazol-2-yl)pyridin-3-yl-5-fluorobenzonitrile (28, CRN02481) showed limited off-target activity and good pharmacokinetic profiles in both male Sprague Dawley rats and Beagle dogs to advance into further preclinical evaluations.


Subject(s)
Congenital Hyperinsulinism , Somatostatin , Animals , Congenital Hyperinsulinism/drug therapy , Dogs , Humans , Male , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/agonists , Somatostatin/pharmacology , Somatostatin/physiology
3.
Bioorg Med Chem Lett ; 30(17): 127391, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738999

ABSTRACT

Nonpeptide sst2 agonists can provide a new treatment option for patients with acromegaly, carcinoid tumors, and neuroendocrine tumors. Our medicinal chemistry efforts have led to the discovery of novel 3,4-dihydroquinazoline-4-carboxamides as sst2 agonists. This class of molecules exhibits excellent human sst2 potency and selectivity against sst1, sst3, sst4 and sst5 receptors. Leading compound 3-(3-chloro-5-methylphenyl)-6-(3-fluoro-2-hydroxyphenyl)-N,7-dimethyl-N-{[(2S)-pyrrolidin-2-yl]methyl}-3,4-dihydroquinazoline-4-carboxamide (28) showed no inhibition of major CYP450 enzymes (2C9, 2C19, 2D6 and 3A4) and weak inhibition of the hERG channel.


Subject(s)
Amides/chemistry , Receptors, Somatostatin/agonists , Amides/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Humans , Protein Isoforms/agonists , Protein Isoforms/metabolism , Receptors, Somatostatin/metabolism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 30(21): 127496, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32805408

ABSTRACT

The discovery of a novel 3H-pyrido[2,3-d]pyrimidin-4-one series as potent and biased sst2 agonists is described. This class of molecules exhibits excellent sst2 potency and selectivity against sst1, sst3, and sst5 receptors, and they are significantly more potent at inhibiting cAMP production than inducing internalization. The orally bioavailable 6-(3-chloro-5-methylphenyl)-3-(3-fluoro-5-hydroxyphenyl)-5-({methyl[(2S)-pyrrolidin-2-ylmethyl]amino}methyl)-3H,4H-pyrido[2,3-d]pyrimidin-4-one (36) also suppresses GH secretion in GHRH-challenged rats in a dose-dependent manner.


Subject(s)
Drug Discovery , Pyrimidinones/pharmacology , Receptors, Interleukin-1/agonists , Administration, Oral , Animals , Biological Availability , Cyclic AMP/antagonists & inhibitors , Cyclic AMP/biosynthesis , Dose-Response Relationship, Drug , Male , Molecular Structure , Pyrimidinones/administration & dosage , Pyrimidinones/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 14(1): 66-74, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36655128

ABSTRACT

The discovery of a novel 4-(4-aminopiperidinyl)-3,6-diarylquinoline series of potent SST2 agonists is described. This class of molecules exhibit excellent selectivity over SST1, SST3, SST4, and SST5 receptors. The compound 3-[4-(4-aminopiperidin-1-yl)-3-(3,5-difluorophenyl)quinolin-6-yl]-2-hydroxybenzonitrile (22, paltusotine, formerly known as CRN00808) showed no direct inhibition of major cytochrome P450 enzymes or the hERG ion channel and had sufficient exposure in rats and excellent exposure in dogs upon oral dosing. In pharmacodynamic studies, compound 22 dose-dependently suppressed growth hormone (GH) secretion induced by an exogenous growth-hormone-releasing hormone (GHRH) challenge in both male and female rats following a single oral dose and suppressed IGF-1 levels with repeated oral administration in both rats and dogs. To the best of our knowledge, compound 22 is the first non-peptide SST2 agonist to advance to human clinical trials and is currently in Phase 3 trials in acromegaly patients and a Phase 2 trial in neuroendocrine tumor patients suffering from carcinoid syndrome.

6.
BMC Biol ; 8: 153, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21182779

ABSTRACT

BACKGROUND: The cyclin-dependent kinase (CDK) inhibitor p27(Kip)¹ is downregulated in a majority of human cancers due to ectopic proteolysis by the ubiquitin-proteasome pathway. The expression of p27 is subject to multiple mechanisms of control involving several transcription factors, kinase pathways and at least three different ubiquitin ligases (SCF(SKP)², KPC, Pirh2), which regulate p27 transcription, translation, protein stability and subcellular localization. Using a chemical genetics approach, we have asked whether this control network can be modulated by small molecules such that p27 protein expression is restored in cancer cells. RESULTS: We developed a cell-based assay for measuring the levels of endogenous nuclear p27 in a high throughput screening format employing LNCaP prostate cancer cells engineered to overexpress SKP2. The assay platform was optimized to Z' factors of 0.48 - 0.6 and piloted by screening a total of 7368 chemical compounds. During the course of this work, we discovered two small molecules of previously unknown biological activity, SMIP001 and SMIP004, which increase the nuclear level of p27 at low micromolar concentrations. SMIPs (small molecule inhibitors of p27 depletion) also upregulate p21(Cip)¹, inhibit cellular CDK2 activity, induce G1 delay, inhibit colony formation in soft agar and exhibit preferential cytotoxicity in LNCaP cells relative to normal human fibroblasts. Unlike SMIP001, SMIP004 was found to downregulate SKP2 and to stabilize p27, although neither SMIP is a proteasome inhibitor. Whereas the screening endpoint - nuclear p27 - was robustly modulated by the compounds, SMIP-mediated cell cycle arrest and apoptosis were not strictly dependent on p27 and p21 - a finding that is explained by parallel inhibitory effects of SMIPs on positive cell cycle regulators, including cyclins E and A, and CDK4. CONCLUSIONS: Our data provide proof-of-principle that the screening platform we developed, using endogenous nuclear p27 as an endpoint, presents an effective means of identifying bioactive molecules with cancer selective antiproliferative activity. This approach, when applied to larger and more diverse sets of compounds with refined drug-like properties, bears the potential of revealing both unknown cellular pathways globally impinging on p27 and novel leads for chemotherapeutics targeting a prominent molecular defect of human cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/therapeutic use , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Cyclin-Dependent Kinase Inhibitor p27 , Drug Screening Assays, Antitumor/methods , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Intracellular Signaling Peptides and Proteins/physiology , Male , Molecular Targeted Therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Processing, Post-Translational/drug effects , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/physiology , Tumor Cells, Cultured , Up-Regulation/drug effects
7.
Cytokine Growth Factor Rev ; 17(6): 431-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17070092

ABSTRACT

Cytokine receptors act through a complex signaling network, involving Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs), to regulate diverse biological processes which control growth, development, homeostasis and immune function, among others. The JAK/STAT signaling pathway is attenuated via three mechanisms controlling the initiation, magnitude, and duration of the signal: the PIAS proteins, which prevent STAT dimerization or DNA interaction, the SHP phosphatases, which dephosphorylate activating tyrosine phosphorylations, and the suppressors of cytokine signaling (SOCS), which are transcribed in response to cytokine stimulation and use several interconnected mechanisms to downregulate the signal. Specific studies targeting the SOCS genes in vivo have unveiled SOCS2 as the main regulator of somatic growth through regulation of GH/IGF-1 signaling. In addition, several studies indicate that SOCS2 also has important actions in the central nervous system, the regulation of metabolism, the immune response, the mammary gland development, cancer, and other cytokine-dependent signaling pathways. Consistent with the role of cytokines in human physiology, any SOCS2 imbalance could result in a broad range of pathologies such as cardiovascular diseases, insulin resistance, cancer, and severe infections, among others. Thus, determining the importance of SOCS2 in health and disease will no doubt aid in the development of novel therapeutic strategies. In this review, we attempt to summarize the available information, including our results, regarding the role of SOCS2 in several biological processes.


Subject(s)
Suppressor of Cytokine Signaling Proteins/physiology , Animals , Bone Development , Cytokines/physiology , Gene Expression Regulation, Developmental , Humans , Mice , Models, Biological , Neoplasms/etiology , Neoplasms/genetics , Neoplasms/physiopathology , Nervous System/growth & development , Signal Transduction , Suppressor of Cytokine Signaling Proteins/deficiency , Suppressor of Cytokine Signaling Proteins/genetics
8.
J Clin Invest ; 115(2): 397-406, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15690087

ABSTRACT

Mice deficient in SOCS2 display an excessive growth phenotype characterized by a 30-50% increase in mature body size. Here we show that the SOCS2-/- phenotype is dependent upon the presence of endogenous growth hormone (GH) and that treatment with exogenous GH induced excessive growth in mice lacking both endogenous GH and SOCS2. This was reflected in terms of overall body weight, body and bone lengths, and the weight of internal organs and tissues. A heightened response to GH was also measured by examining GH-responsive genes expressed in the liver after exogenous GH administration. To further understand the link between SOCS2 and the GH-signaling cascade, we investigated the nature of these interactions using structure/function and biochemical interaction studies. Analysis of the 3 structural motifs of the SOCS2 molecule revealed that each plays a crucial role in SOCS2 function, with the conserved SOCS-box motif being essential for all inhibitory function. SOCS2 was found to bind 2 phosphorylated tyrosines on the GH receptor, and mutational analysis of these amino acids showed that both were essential for SOCS2 function. Together, the data provide clear evidence that SOCS2 is a negative regulator of GH signaling.


Subject(s)
DNA-Binding Proteins/metabolism , Growth Hormone/physiology , Receptors, Somatotropin/metabolism , Repressor Proteins/metabolism , Signal Transduction/physiology , Trans-Activators/metabolism , Amino Acid Motifs/genetics , Animals , Body Weight/drug effects , Body Weight/genetics , Body Weight/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Growth Hormone/administration & dosage , Growth Hormone/genetics , Insulin-Like Growth Factor I/physiology , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Phosphorylation , Protein Binding/genetics , Protein Binding/physiology , Receptors, Somatotropin/genetics , Repressor Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Suppressor of Cytokine Signaling Proteins , Trans-Activators/genetics , Tyrosine/metabolism
9.
Mol Endocrinol ; 21(1): 293-311, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17008382

ABSTRACT

The GH-activated signal transducer and activator of transcription 5b (STAT5b) is an essential regulator of somatic growth. The transcriptional response to STAT5b in liver is poorly understood. We have combined microarray-based expression profiling and phylogenetic analysis of gene regulatory regions to study the interplay between STAT5b and GH in the regulation of hepatic gene expression. The acute transcriptional response to GH in vivo after a single pulse of GH was studied in the liver of hypophysectomized rats in the presence of either constitutively active or a dominant-negative STAT5b delivered by adenoviral gene transfer. Genes showing differential expression in these two situations were analyzed for the presence of STAT5b binding sites in promoter and intronic regions that are phylogenetically conserved between rats and humans. Using this approach, we showed that most rapid transcriptional effects of GH in the liver are not results of direct actions of STAT5b. In addition, we identified novel STAT5b cis regulatory elements in genes such as Frizzled-4, epithelial membrane protein-1, and the suppressor of cytokine signaling 2 (SOCS2). Detailed analysis of SOCS2 promoter demonstrated its direct transcriptional regulation by STAT5b upon GH stimulation. A novel response element was identified within the first intron of the human SOCS2 gene composed of an E-box followed by tandem STAT5b binding sites, both of which are required for full GH responsiveness. In summary, we demonstrate the power of combining transcript profiling with phylogenetic sequence analysis to define novel regulatory paradigms.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Liver/metabolism , STAT5 Transcription Factor/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Base Sequence , Growth Hormone/metabolism , Humans , Male , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phylogeny , Rats , Rats, Sprague-Dawley , Signal Transduction
10.
Oncotarget ; 9(38): 25057-25074, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29861853

ABSTRACT

Di(1H-indol-3-yl)(4-trifluoromethylphenyl)methane (DIM-Ph-4-CF3) is an analog of orphan nuclear receptor 4A1 (NR4A1) ligand cytosporone B. We have synthesized several oxidation products of DIM-Ph-4-CF3, focusing on analogs with electron-withdrawing or donating groups at their phenyl ring 4-positions, and examined their anti-cancer activity and mechanism-of-action. Mesylates (DIM-Ph-4-X+ OMs-s) having CF3, CO2Me and Cl groups were more effective inhibitors of cancer cell viability than their precursors. 19F NMR spectroscopy and differential scanning calorimetry strongly indicated interactions of DIM-Ph-4-CF3+ OMs- with the NR4A1 ligand binding domain, and compound-induced apoptosis of prostate cancer cells was dependent on NR4A1. DIM-Ph-4-CF3+ OMs- showed robust inhibition of LNCaP prostate cancer xenografts with no apparent toxicity. In vitro and in vivo, DIM-Ph-4-CF3+ OMs- activated proapoptotic unfolded protein response (UPR) signaling in prostate cancer cells. Independently of DIM-Ph-4-CF3+ OMs-, the bulk of NR4A1 localized to the cytoplasm in various cancer cell lines, suggesting a cytoplasmic mechanism-of-action of DIM-Ph-4-CF3+ OMs- in UPR induction and cell death. In summary, the data suggest that oxidized analogs of DIM-Ph-4-CF3 possess potent and safe anti-cancer activity which is mediated through UPR signaling downstream of NR4A1 binding.

11.
Mol Endocrinol ; 20(2): 241-53, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16037128

ABSTRACT

GH has been of significant scientific interest for decades because of its capacity to dramatically change physiological growth parameters. Furthermore, GH interacts with a range of other hormonal pathways and is an established pharmacological agent for which novel therapeutical applications can be foreseen. It is easy to see the requirement for a number of postreceptor mechanisms to regulate and control target tissue sensitivity to this versatile hormone. In recent years, some of the components that take part in the down-regulatory mechanism targeting the activated GH receptor (GHR) have been defined, and the physiological significance of some of these key components has begun to be characterized. Down-regulation of the GHR is achieved through a complex mechanism that involves rapid ubiquitin-dependent endocytosis of the receptor, the action of tyrosine phosphatases, and the degradation by the proteasome. The suppressors of cytokine signaling (SOCS) protein family, particularly SOCS2, plays an important role in regulating GH actions. The aim of this review is to summarize collected knowledge, including very recent findings, regarding the intracellular mechanisms responsible for the GHR signaling down-regulation. Insights into these mechanisms can be of relevance to several aspects of GH research. It can help to understand growth-related disease conditions, to explain GH resistance, and may be used to develop pharmaceuticals that enhance some the beneficial actions of endogenously secreted GH in a tissue-specific manner.


Subject(s)
Down-Regulation , Receptors, Somatotropin/metabolism , Signal Transduction , Animals , Antigens, Differentiation/metabolism , Female , Humans , Male , Mice , Protein Tyrosine Phosphatases/metabolism , Rats , Receptors, Immunologic/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
12.
Mol Endocrinol ; 19(3): 781-93, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15563548

ABSTRACT

Suppressor of cytokine signaling-2 (SOCS2)-deficient (SOCS2-/-) mice grow significantly larger than their littermates, suggesting that SOCS2 is important in the negative regulation of the actions of GH and/or IGF-I. The aim of this study was to identify genes and metabolic parameters that might contribute to the SOCS2-/- phenotype. We demonstrate that although SOCS2 deficiency induces significant changes in hepatic gene expression, only a fraction of these overlap with known GH-induced effects in the liver, suggesting that SOCS2 might be an important regulator of other growth factors and cytokines acting on the liver. However, an important role of GH and IGF-I in the phenotype of these animals was demonstrated by an overexpression of IGF-binding protein-3 mRNA in the liver and increased levels of circulating IGF-binding protein-3. Other GH-like effects included diminished serum triglycerides and down-regulation of lipoprotein lipase in adipose tissue. Interestingly, SOCS2-/- mice did not differ from their wild-type littermates in glucose or insulin tolerance tests, which is in contrast with the known diabetogenic effects of GH. Furthermore, there was no evidence of impaired insulin signaling in primary hepatocytes isolated from SOCS2-/- mice. Moreover, increased expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha mRNA was detected in skeletal muscle, which might contribute to normal glycemic control despite the apparent overactivity of the GH/IGF-I axis. Our data indicate that SOCS2 deficiency partially mimics a state of increased GH activity, but also results in changes that cannot be related to known GH effects.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Repressor Proteins/genetics , Repressor Proteins/physiology , Trans-Activators/genetics , Trans-Activators/physiology , Adipose Tissue/enzymology , Animals , Cluster Analysis , DNA, Complementary/metabolism , Down-Regulation , Glucose/metabolism , Glucose Tolerance Test , Growth Hormone/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor I/metabolism , Lipid Metabolism , Lipoprotein Lipase/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Phosphorylation , Phylogeny , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Suppressor of Cytokine Signaling Proteins , Time Factors , Tissue Distribution
13.
Endocrinology ; 145(4): 1972-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14684613

ABSTRACT

The aim of this study was to identify genes for hepatic fuel metabolism with a gender-differentiated expression and to determine which of these that might be regulated by the female-specific secretion of GH. Effects of gender and continuous infusion of GH to male rats were studied in the liver using cDNA microarrays representing 3200 genes. Sixty-nine transcripts displayed higher expression levels in females, and 177 displayed higher expression in males. The portion of GH-regulated genes was the same (30%) within the two groups of gender-specific genes. The male liver had a higher expression of genes involved in fuel metabolism, indicating that male rats might have a greater capacity for high metabolic turnover, compared with females. Most notable among the female-predominant transcripts was fatty acid translocase/CD36, with 18-fold higher mRNA levels in the female liver and 4-fold higher mRNA levels in males treated with GH, compared with untreated males. This gender-differentiated expression was confirmed at mRNA and protein levels in the rat and at the mRNA level in human livers. Although purely speculative, it is possible that higher levels of fatty acid translocase/CD36 in human female liver might contribute to the sexually dimorphic development of diseases resulting from or characterized by disturbances in lipid metabolism, such as arteriosclerosis, hyperlipidemia, and insulin resistance.


Subject(s)
CD36 Antigens/metabolism , Liver/metabolism , Organic Anion Transporters/metabolism , Sex Characteristics , Adult , Animals , CD36 Antigens/genetics , Female , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Organic Anion Transporters/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
14.
Oncotarget ; 4(8): 1212-29, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23902736

ABSTRACT

We previously identified SMIP004 (N-(4-butyl-2-methyl-phenyl) acetamide) as a novel inducer of cancer-cell selective apoptosis of human prostate cancer cells. SMIP004 decreased the levels of positive cell cycle regulators, upregulated cyclin-dependent kinase inhibitors, and resulted in G1 arrest, inhibition of colony formation in soft agar, and cell death. However, the mechanism of SMIP004-induced cancer cell selective apoptosis remained unknown. Here, we used chemical genomic and proteomic profiling to unravel a SMIP004-induced pro-apoptotic pathway, which initiates with disruption of mitochondrial respiration leading to oxidative stress. This, in turn, activates two pathways, one eliciting cell cycle arrest by rapidly targeting cyclin D1 for proteasomal degradation and driving the transcriptional downregulation of the androgen receptor, and a second pathway that activates pro-apoptotic signaling through MAPK activation downstream of the unfolded protein response (UPR). SMIP004 potently inhibits the growth of prostate and breast cancer xenografts in mice. Our data suggest that SMIP004, by inducing mitochondrial ROS formation, targets specific sensitivities of prostate cancer cells to redox and bioenergetic imbalances that can be exploited in cancer therapy.


Subject(s)
Acetamides/pharmacology , Mitochondria/drug effects , Prostatic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cyclin D1/metabolism , Gene Expression/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/drug effects , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Random Allocation , Signal Transduction/drug effects , Ubiquitin/metabolism , Unfolded Protein Response/drug effects , Xenograft Model Antitumor Assays
15.
Medchemcomm ; 4(2): 332-339, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-24795803

ABSTRACT

A novel and the shortest route, thus far, for preparing cytosporone B (Csn-B) is reported. Csn-B and two analogs were used to probe the importance of hydroxyl groups at the 3- and 5-positions of the Csn-B benzene ring in inhibiting the viability of human H460 lung cancer and LNCaP prostate cancer cells, inducing H460 cell apoptosis, and interacting with the NR4A1 (TR3) ligand-binding domain (LBD). These studies indicate that Csn-B and 5-Me-Csn-B, having a phenolic hydroxyl at the 3-position of their aromatic rings, had similar activities in inhibiting cancer cell viability and in inducing apoptosis, whereas 3,5-(Me)2-Csn-B was unable to do so. These results are in agreement with ligand-binding experiments showing that the interaction with the NR4A1 LBD required the presence of the 3-hydroxyl group.

16.
Chem Biol ; 19(12): 1497-8, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23261592

ABSTRACT

The cullin-RING ubiquitin ligase, CRL1(SKP2), directing the degradation of the tumor suppressor p27, is a well validated drug target in a wide variety of human cancers. In this issue of Chemistry & Biology, Wu and colleagues describe first-in-class small molecule inhibitors of CRL1(SKP2)-mediated degradation of p27.

17.
Exp Cell Res ; 294(1): 269-80, 2004 Mar 10.
Article in English | MEDLINE | ID: mdl-14980520

ABSTRACT

Transient activation of the signal transducers and activators of transcription (STAT) proteins in response to growth hormone (GH) and other type II cytokines plays a pivotal role on specific gene transcription. The negative regulation of STATs seems to be exerted at the GH receptor (GHR)/Janus Kinase (JAK) complex and involves two main mechanisms: (1) the GH-induced ubiquitination/internalization of GHR and (2) the action of SOCS proteins. Since GH regulates cellular cytoskeleton with potential implications in GH signaling, we investigated the effects of actin cytoskeleton disruption on the kinetics of GH-activated GHR/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signaling pathway. Disruption of the actin-based cytoskeleton with cytochalasin D (CytoD) did not affect the rapid GH induction of JAK2 and STAT5 activities. However, pretreatment of BRL-4 cells with CytoD prolonged both, JAK2/STAT5 tyrosine phosphorylation and STAT5 DNA binding activity, for at least 2 h. Our results demonstrated that the synthesis of the several SOCS proteins (SOCS-1, -2, and -3) was not affected by treatment of the cells with CytoD. On the other hand, the inhibitory actions of SOCS1, 2, and -3 on GH-induced STAT5 reporter activity were partially blocked by disruption of the cytoskeleton. Disassembly of the actin filaments by CytoD is accompanied by accumulation of ubiquitinated forms of GHR but it does not affect GHR internalization. We conclude that the integrity of the actin cytoskeleton network plays an essential role in the negative regulation of GHR/JAK2/STAT5 signaling pathway by facilitating the GHR ubiquitination/degradation through mechanisms acting downstream SOCS.


Subject(s)
Actin Cytoskeleton/physiology , DNA-Binding Proteins/metabolism , Growth Hormone/pharmacology , Milk Proteins , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins , Signal Transduction , Trans-Activators/metabolism , Actin Cytoskeleton/drug effects , Animals , Cells, Cultured , Cytochalasin D/pharmacology , Down-Regulation , Janus Kinase 2 , Rats , Receptors, Somatotropin/metabolism , Repressor Proteins/metabolism , STAT5 Transcription Factor , Transcriptional Activation , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL