Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Pflugers Arch ; 476(4): 505-516, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448727

ABSTRACT

The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it contributes to hydrogen secretion and sodium (re)absorption. The roles of this transporter have been studied by the use of the respective knockout mice and by using pharmacological inhibitors. Whole-body NHE3 knockout mice suffer from a high mortality rate (with only ∼30% of mice surviving into adulthood), and based on the expression of NHE3 in both intestine and kidney, some conclusions that were originally derived were based on this rather complex phenotype. In the last decade, more refined models have been developed that added temporal and spatial control of NHE3 expression. For example, novel mouse models have been developed with a knockout of NHE3 in intestinal epithelial cells, tubule/collecting duct of the kidney, proximal tubule of the kidney, and thick ascending limb of the kidney. These refined models have significantly contributed to our understanding of the role of NHE3 in a tissue/cell type-specific manner. In addition, tenapanor was developed, which is a non-absorbable, intestine-specific NHE3 inhibitor. In rat and human studies, tenapanor lowered intestinal Pi uptake and was effective in lowering plasma Pi levels in patients on hemodialysis. Of note, diarrhea is seen as a side effect of tenapanor (with its indication for the treatment of constipation) and in intestine-specific NHE3 knockout mice; however, effects on plasma Pi were not supported by this mouse model which showed enhanced and not reduced intestinal Pi uptake. Further studies indicated that the gut microbiome in mice lacking intestinal NHE3 resembles an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, something similar seen in patients with inflammatory bowel disease. This review will highlight recent developments and summarize newly gained insight from these refined models.


Subject(s)
Isoquinolines , Sodium-Hydrogen Exchangers , Sodium , Sulfonamides , Animals , Humans , Mice , Rats , Mice, Knockout , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
2.
Kidney Int ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089578

ABSTRACT

The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.

3.
Am J Physiol Renal Physiol ; 323(2): F141-F155, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35635321

ABSTRACT

Na+/H+ exchanger isoform 3 (NHE3) facilitates Na+ reabsorption and H+ secretion by the kidneys. Despite stronger NHE3 abundance in the thick ascending limb (TAL) compared with the S1 and S2 segments of the proximal tubule, the role of NHE3 in the TAL is poorly understood. To investigate the role of NHE3 in the TAL, we generated and phenotyped TAL-specific NHE3 knockout (NHE3TAL-KO) mice. Compared with control mice, NHE3TAL-KO mice did not show significant differences in body weight, blood pH, or plasma Na+, K+, or Cl- levels. Fluid intake trended to be higher and urine osmolality was significantly lower in NHE3TAL-KO mice. Despite a similar glomerular filtration rate, NHE3TAL-KO mice had a greater urinary K+-to-creatinine ratio. One proposed role of NHE3 relates to furosemide-induced urinary acidification. Acute bolus treatment with furosemide under anesthesia did not result in differences in the dose dependence of urinary flow rate, Cl- excretion, or maximal urinary acidification between genotypes; however, in contrast with control mice, urinary pH returned immediately toward baseline levels in NHE3TAL-KO mice. Chronic furosemide treatment reduced urine osmolality similarly in both genotypes but metabolic alkalosis, hypokalemia, and calciuresis were absent in NHE3TAL-KO mice. Compared with vehicle, chronic furosemide treatment resulted in greater Na+-K+-2Cl- abundance regardless of genotype. Na+-phosphate cotransporter 2a abundance was also greater in furosemide-treated control mice compared with vehicle treatment, an effect that was absent in NHE3TAL-KO mice. In summary, NHE3 in the TAL plays a role in the sustained acidification effect of furosemide. Consistent with this, long-term treatment with furosemide did not result in metabolic alkalosis in NHE3TAL-KO mice.NEW & NOTEWORTHY Na+/H+ exchanger isoform 3 (NHE3) is very abundant in the thick ascending limb (TAL) compared with the proximal tubule. Much has been learned about the role of NHE3 in the proximal tubule; however, the function of NHE3 in the TAL remains elusive. A novel mouse model that lacks NHE3 selectively in the TAL not only shows a phenotype under baseline conditions but also identifies that NHE3 is required for sustained but not acute furosemide-induced urinary acidification.


Subject(s)
Alkalosis , Furosemide , Animals , Furosemide/pharmacology , Hydrogen-Ion Concentration , Mice , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
4.
Am J Physiol Renal Physiol ; 322(6): F692-F707, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35466690

ABSTRACT

Na+-glucose cotransporter-2 (SGLT2) inhibitors are the new mainstay of treatment for diabetes mellitus and cardiovascular diseases. Despite the remarkable benefits, the molecular mechanisms mediating the effects of SGLT2 inhibitors on water and electrolyte balance are incompletely understood. The goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function via affecting the renin-angiotensin-aldosterone system (RAAS) and Na+ channels/transporters along the nephron in Dahl salt-sensitive rats, a model of salt-induced hypertension. Administration of dapagliflozin (Dapa) at 2 mg/kg/day via drinking water for 3 wk blunted the development of salt-induced hypertension as evidenced by lower blood pressure and a left shift of the pressure natriuresis curve. Urinary flow rate, glucose excretion, and Na+- and Cl--to-creatinine ratios increased in Dapa-treated compared with vehicle-treated rats. To define the contribution of the RAAS, we measured various hormones. Despite apparent effects on Na+- and Cl--to-creatinine ratios, Dapa treatment did not affect RAAS metabolites. Subsequently, we assessed the effects of Dapa on renal Na+ channels and transporters using RT-PCR, Western blot analysis, and patch clamp. Neither mRNA nor protein expression levels of renal transporters (SGLT2, Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter 2, Na+-Cl- cotransporter, and α-, ß-, and γ-epithelial Na+ channel subunits) changed significantly between groups. Furthermore, electrophysiological experiments did not reveal any difference in Dapa treatment on the conductance and activity of epithelial Na+ channels. Our data suggest that SGLT2 inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the RAAS or the expression or activity of the main Na+ channels and transporters.NEW & NOTEWORTHY The present study indicates that Na+-glucose cotransporter-2 (SGLT2) inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development and magnitude of salt-induced hypertension. Chronic inhibition of SGLT2 increases glucose and Na+ excretion without secondary effects on the expression and function of other Na+ transporters and channels along the nephron and hormone levels in the renin-angiotensin-aldosterone system. These data provide novel insights into the effects of SGLT2 inhibitors and their potential use in hypertension.


Subject(s)
Hypertension , Nephrons , Renin-Angiotensin System , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Animals , Blood Pressure/drug effects , Creatinine/metabolism , Glucose/pharmacology , Hypertension/chemically induced , Hypertension/metabolism , Nephrons/drug effects , Nephrons/metabolism , Rats , Rats, Inbred Dahl , Renin-Angiotensin System/drug effects , Sodium Chloride, Dietary/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
5.
Biochem Soc Trans ; 50(1): 439-446, 2022 02 28.
Article in English | MEDLINE | ID: mdl-34994388

ABSTRACT

Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl- and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.


Subject(s)
Hyperphosphatemia , Renal Insufficiency, Chronic , Animals , Female , Humans , Hyperphosphatemia/drug therapy , Male , Mice , Mice, Knockout , Parathyroid Hormone/metabolism , Phosphates/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
6.
Curr Opin Nephrol Hypertens ; 31(5): 486-492, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35894284

ABSTRACT

PURPOSE OF REVIEW: Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS: Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY: Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.


Subject(s)
Hyperphosphatemia , Renal Insufficiency, Chronic , Sodium-Phosphate Cotransporter Proteins, Type IIa , Vascular Calcification , Animals , Calcium/metabolism , Fibroblast Growth Factors/metabolism , Humans , Hyperphosphatemia/drug therapy , Hyperphosphatemia/etiology , Parathyroid Hormone/metabolism , Phosphates/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Sodium-Phosphate Cotransporter Proteins, Type IIa/antagonists & inhibitors
7.
Am J Physiol Renal Physiol ; 319(3): F541-F551, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32744087

ABSTRACT

Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 µmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.


Subject(s)
Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Animals , Biological Transport/drug effects , Cell Line , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Opossums , Parathyroid Hormone/pharmacology , Patch-Clamp Techniques , Random Allocation , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
8.
Curr Opin Nephrol Hypertens ; 29(5): 523-530, 2020 09.
Article in English | MEDLINE | ID: mdl-32701600

ABSTRACT

PURPOSE OF REVIEW: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antihyperglycemic drugs that act by inhibiting renal sodium-glucose cotransport. Here we present new insights into 'off target', or indirect, effects of SGLT2 inhibitors. RECENT FINDINGS: SGLT2 inhibition causes an acute increase in urinary glucose excretion. In addition to lowering blood glucose, there are several other effects that contribute to the overall beneficial renal and cardiovascular effects. Reabsorption of about 66% of sodium is accomplished in the proximal tubule and dependent on the sodium-hydrogen exchanger isoform 3 (NHE3). SGLT2 colocalizes with NHE3, and high glucose levels reduce NHE3 activity. The proximal tubule is also responsible for the majority of phosphate (Pi) reabsorption. SGLT2 inhibition is associated with increases in plasma Pi, fibroblast growth factor 23 and parathyroid hormone levels in nondiabetics and type 2 diabetes mellitus. Studies in humans identified a urate-lowering effect by SGLT2 inhibition which is possibly mediated by urate transporter 1 (URAT1) and/or glucose transporter member 9 in the proximal tubule. Of note, magnesium levels were also found to increase under SGLT2 inhibition, an effect that was preserved in nondiabetic patients with hypomagnesemia. SUMMARY: Cardiorenal effects of SGLT2 inhibition might involve, in addition to direct effects on glucose homeostasis, effects on NHE3, phosphate, urate, and magnesium homeostasis.


Subject(s)
Hypoglycemic Agents/pharmacology , Kidney Tubules, Proximal/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Humans , Kidney Tubules, Proximal/metabolism , Magnesium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism
9.
Clin Sci (Lond) ; 134(8): 941-953, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32227118

ABSTRACT

The sodium-hydrogen exchanger isoform 3 (NHE3, SLC9A3) is abundantly expressed in the gastrointestinal tract and is proposed to play essential roles in Na+ and fluid absorption as well as acid-base homeostasis. Mutations in the SLC9A3 gene can cause congenital sodium diarrhea (CSD). However, understanding the precise role of intestinal NHE3 has been severely hampered due to the lack of a suitable animal model. To navigate this problem and better understand the role of intestinal NHE3, we generated a tamoxifen-inducible intestinal epithelial cell-specific NHE3 knockout mouse model (NHE3IEC-KO). Before tamoxifen administration, the phenotype and blood parameters of NHE3IEC-KO were unremarkable compared with control mice. After tamoxifen administration, NHE3IEC-KO mice have undetectable levels of NHE3 in the intestine. NHE3IEC-KO mice develop watery, alkaline diarrhea in combination with a swollen small intestine, cecum and colon. The persistent diarrhea results in higher fluid intake. After 3 weeks, NHE3IEC-KO mice show a ∼25% mortality rate. The contribution of intestinal NHE3 to acid-base and Na+ homeostasis under normal conditions becomes evident in NHE3IEC-KO mice that have metabolic acidosis, lower blood bicarbonate levels, hyponatremia and hyperkalemia associated with drastically elevated plasma aldosterone levels. These results demonstrate that intestinal NHE3 has a significant contribution to acid-base, Na+ and volume homeostasis, and lack of intestinal NHE3 has consequences on intestinal structural integrity. This mouse model mimics and explains the phenotype of individuals with CSD carrying SLC9A3 mutations.


Subject(s)
Abnormalities, Multiple/genetics , Diarrhea/congenital , Epithelial Cells/metabolism , Metabolism, Inborn Errors/genetics , Sodium-Hydrogen Exchanger 3/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/mortality , Abnormalities, Multiple/pathology , Animals , Diarrhea/genetics , Diarrhea/metabolism , Diarrhea/mortality , Diarrhea/pathology , Disease Models, Animal , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/mortality , Metabolism, Inborn Errors/pathology , Mice , Mice, Knockout , Mutation , Sodium-Hydrogen Exchanger 3/metabolism
10.
J Am Soc Nephrol ; 30(11): 2128-2139, 2019 11.
Article in English | MEDLINE | ID: mdl-31409727

ABSTRACT

BACKGROUND: The kidneys play an important role in phosphate homeostasis. Patients with CKD develop hyperphosphatemia in the later stages of the disease. Currently, treatment options are limited to dietary phosphate restriction and oral phosphate binders. The sodium-phosphate cotransporter Npt2a, which mediates a large proportion of phosphate reabsorption in the kidney, might be a good therapeutic target for new medications for hyperphosphatemia. METHODS: The authors assessed the effects of the first orally bioavailable Npt2a inhibitor (Npt2a-I) PF-06869206 in normal mice and mice that had undergone subtotal nephrectomy (5/6 Nx), a mouse model of CKD. Dose-response relationships of sodium, chloride, potassium, phosphate, and calcium excretion were assessed in response to the Npt2a inhibitor in both groups of mice. Expression and localization of Npt2a/c and levels of plasma phosphate, calcium, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) were studied up to 24-hours after Npt2a-I treatment. RESULTS: In normal mice, Npt2a inhibition caused a dose-dependent increase in urinary phosphate (ED50 approximately 21 mg/kg), calcium, sodium and chloride excretion. In contrast, urinary potassium excretion, flow rate and urinary pH were not affected dose dependently. Plasma phosphate and PTH significantly decreased after 3 hours, with both returning to near baseline levels after 24 hours. Similar effects were observed in the mouse model of CKD but were reduced in magnitude. CONCLUSIONS: Npt2a inhibition causes a dose-dependent increase in phosphate, sodium and chloride excretion associated with reductions in plasma phosphate and PTH levels in normal mice and in a CKD mouse model.


Subject(s)
Hypophosphatemia, Familial/etiology , Phosphates/blood , Renal Insufficiency, Chronic/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/antagonists & inhibitors , Animals , Calcium/urine , Disease Models, Animal , Dose-Response Relationship, Drug , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Male , Mice , Mice, Inbred C57BL , Parathyroid Hormone/blood
11.
J Am Soc Nephrol ; 30(8): 1454-1470, 2019 08.
Article in English | MEDLINE | ID: mdl-31253651

ABSTRACT

BACKGROUND: The NaCl cotransporter NCC in the kidney distal convoluted tubule (DCT) regulates urinary NaCl excretion and BP. Aldosterone increases NaCl reabsorption via NCC over the long-term by altering gene expression. But the acute effects of aldosterone in the DCT are less well understood. METHODS: Proteomics, bioinformatics, and cell biology approaches were combined with animal models and gene-targeted mice. RESULTS: Aldosterone significantly increases NCC activity within minutes in vivo or ex vivo. These effects were independent of transcription and translation, but were absent in the presence of high potassium. In vitro, aldosterone rapidly increased intracellular cAMP and inositol phosphate accumulation, and altered phosphorylation of various kinases/kinase substrates within the MAPK/ERK, PI3K/AKT, and cAMP/PKA pathways. Inhibiting GPR30, a membrane-associated receptor, limited aldosterone's effects on NCC activity ex vivo, and NCC phosphorylation was reduced in GPR30 knockout mice. Phosphoproteomics, network analysis, and in vitro studies determined that aldosterone activates EGFR-dependent signaling. The EGFR immunolocalized to the DCT and EGFR tyrosine kinase inhibition decreased NCC activity ex vivo and in vivo. CONCLUSIONS: Aldosterone acutely activates NCC to modulate renal NaCl excretion.


Subject(s)
Aldosterone/pharmacology , Kidney Tubules, Distal/metabolism , Signal Transduction , Thiazides/pharmacology , Aldosterone/metabolism , Animals , Blood Pressure , Calcium/metabolism , Cell Line , Cell Membrane/metabolism , Computational Biology , Cyclic AMP/metabolism , ErbB Receptors/metabolism , Gitelman Syndrome/metabolism , Kidney/metabolism , Male , Mice , Mineralocorticoids/metabolism , Phosphorylation , Proteomics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Sodium Chloride/metabolism , Solute Carrier Family 12, Member 3/metabolism
12.
J Infect Dis ; 220(11): 1719-1728, 2019 10 22.
Article in English | MEDLINE | ID: mdl-30624615

ABSTRACT

BACKGROUND: Cholera toxin (CT)-induced diarrhea is mediated by cyclic adenosine monophosphate (cAMP)-mediated active Cl- secretion via the cystic fibrosis transmembrane conductance regulator (CFTR). Although the constitutive activation of adenylyl cyclase (AC) in response to CT is due to adenosine diphosphate ribosylation of the small G protein α-subunit activating CFTR with consequent secretory diarrhea, the AC isoform(s) involved remain unknown. METHODS: We generated intestinal epithelial cell-specific adenylyl cyclase 6 (AC6) knockout mice to study its role in CT-induced diarrhea. RESULTS: AC6 messenger RNA levels were the highest of all 9 membrane-bound AC isoforms in mouse intestinal epithelial cells. Intestinal epithelial-specific AC6 knockout mice (AC6loxloxVillinCre) had undetectable AC6 levels in small intestinal and colonic epithelial cells. No significant differences in fluid and food intake, plasma electrolytes, intestinal/colon anatomy and morphology, or fecal water content were observed between genotypes. Nevertheless, CT-induced fluid accumulation in vivo was completely absent in AC6loxloxVillinCre mice, associated with a lack of forskolin- and CT-induced changes in the short-circuit current (ISC) of the intestinal mucosa, impaired cAMP generation in acutely isolated small intestinal epithelial cells, and significantly impaired apical CFTR levels in response to forskolin. CONCLUSIONS: AC6 is a novel target for the treatment of CT-induced diarrhea.


Subject(s)
Adenylyl Cyclases/metabolism , Cholera Toxin/toxicity , Cholera/physiopathology , Diarrhea/physiopathology , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Adenylyl Cyclases/deficiency , Animals , Colforsin/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout
13.
Diabetes Obes Metab ; 21 Suppl 2: 43-52, 2019 04.
Article in English | MEDLINE | ID: mdl-31081587

ABSTRACT

Epithelial glucose transport is accomplished by Na+ -glucose co-transporters, SGLT1 and SGLT2. In the intestine, uptake of dietary glucose is for its majority mediated by SGLT1, and humans with mutations in the SGLT1 gene show glucose/galactose malabsorption. In the kidney, both transporters, SGLT1 and SGLT2, are expressed and recent studies identified that SGLT2 mediates up to 97% of glucose reabsorption. Humans with mutations in the SGLT2 gene show familial renal glucosuria. In the last three decades, significant progress was made in understanding the physiology of these transporters and their potential as therapeutic targets. Based on the structure of phlorizin, a natural compound acting as a SGLT1/2 inhibitor, initially several SGLT2, and later SGLT1 and dual SGLT1/2 inhibitors have been developed. Interestingly, SGLT2 knockout or treatment with SGLT2 selective inhibitors only causes a fractional glucose excretion in the magnitude of ∼60%, an effect mediated by up-regulation of renal SGLT1. Based on these findings the hypothesis was brought forward that dual SGLT1/2 inhibition might further improve glycaemic control via targeting two distinct organs that express SGLT1: the intestine and the kidney. Of note, SGLT1/2 double knockout mice completely lack renal glucose reabsorption. This review will address the rationale for the development of SGLT1 and dual SGLT1/2 inhibitors and potential benefits compared to sole SGLT2 inhibition.


Subject(s)
Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Glucose/metabolism , Humans , Mice , Renal Reabsorption/drug effects , Renal Reabsorption/genetics , Sodium-Glucose Transporter 2/drug effects
14.
Diabetologia ; 61(10): 2079-2086, 2018 10.
Article in English | MEDLINE | ID: mdl-30132033

ABSTRACT

Sodium-glucose cotransporters SGLT1 (encoded by SGLT1, also known as SLC5A1) and SGLT2 (encoded by SGLT2, also known as SLC5A2) are important mediators of epithelial glucose transport. While SGLT1 accounts for most of the dietary glucose uptake in the intestine, SGLT2 is responsible for the majority of glucose reuptake in the tubular system of the kidney, with SGLT1 reabsorbing the remainder of the filtered glucose. As a consequence, mutations in the SLC5A1 gene cause glucose/galactose malabsorption, whereas mutations in SLC5A2 are associated with glucosuria. Since the cloning of SGLT1 more than 30 years ago, big strides have been made in our understanding of these transporters and their suitability as drug targets. Phlorizin, a naturally occurring competitive inhibitor of SGLT1 and SGLT2, provided the first insights into potential efficacy, but its use was hampered by intestinal side effects and a short half-life. Nevertheless, it was a starting point for the development of specific inhibitors of SGLT1 and SGLT2, as well as dual SGLT1/2 inhibitors. Since the approval of the first SGLT2 inhibitor in 2013 by the US Food and Drug Administration, SGLT2 inhibitors have become a new mainstay in the treatment of type 2 diabetes mellitus. They also have beneficial effects on the cardiovascular system (including heart failure) and the kidney. This review focuses on the rationale for the development of individual SGLT2 and SGLT1 inhibitors, as well as dual SGLT1/2 inhibition, including, but not limited to, aspects of genetics, genetically modified mouse models, mathematical modelling and general considerations of drug discovery in the field of metabolism.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Ketoacidosis/prevention & control , Disease Models, Animal , Drug Design , Glucose/metabolism , Humans , Intestinal Mucosa/metabolism , Kidney/metabolism , Mice , Mutation , Phlorhizin/pharmacology , Sodium-Glucose Transporter 2/metabolism
15.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R563-R573, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29351422

ABSTRACT

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.


Subject(s)
Body Weight , Energy Metabolism , Kidney Concentrating Ability , Kidney Medulla/enzymology , Loop of Henle/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium/urine , Animals , Dipodomys , Gene Expression Regulation, Enzymologic , Kidney Medulla/ultrastructure , Loop of Henle/ultrastructure , Mitochondria/enzymology , Osmoregulation , Rats, Sprague-Dawley , Rats, Wistar , Renal Elimination , Renal Reabsorption , Species Specificity
16.
Clin Sci (Lond) ; 132(16): 1779-1796, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29941522

ABSTRACT

Adenylyl cyclase (AC) isoform 6 (AC6) is highly expressed throughout the renal tubule and collecting duct (CD), catalyzes the synthesis of cAMP and contributes to various aspects of renal transport. Several proteins involved in acid-base homeostasis are regulated by cAMP. In the present study, we assess the relative contribution of AC6 to overall acid-base regulation using mice with global deletion of AC6 (AC6-/-) or newly generated mice lacking AC6 in the renal tubule and CD (AC6loxloxPax8Cre). Higher energy expenditure in AC6-/- relative to wild-type (WT) mice, was associated with lower urinary pH, mild alkalosis in conjunction with elevated blood HCO3- concentrations, and significantly higher renal abundance of the H+-ATPase B1 subunit. In contrast with WT mice, AC6-/- mice have a less pronounced increase in urinary pH after 8 days of HCO3- challenge, which is associated with increased blood pH and HCO3- concentrations. Immunohistochemistry demonstrated that AC6 was expressed in intercalated cells (IC), but subcellular distribution of the H+-ATPase B1 subunit, pendrin, and the anion exchangers 1 and 2 in AC6-/- mice was normal. In the AC6-/- mice, H+-ATPase B1 subunit levels after HCO3- challenge were greater, which correlated with a higher number of type A IC. In contrast with the AC6-/- mice, AC6loxloxPax8Cre mice had normal urinary pH under baseline conditions but higher blood HCO3- than controls after HCO3- challenge. In conclusion, AC6 is required for maintaining normal acid-base homeostasis and energy expenditure. Under baseline conditions, renal AC6 is redundant for acid-base balance but becomes important under alkaline conditions.


Subject(s)
Acid-Base Equilibrium/physiology , Adenylyl Cyclases/metabolism , Homeostasis/physiology , Kidney/metabolism , Adenylyl Cyclases/genetics , Animals , Blood Chemical Analysis , Energy Metabolism , Hydrogen-Ion Concentration , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Urine/chemistry , Vacuolar Proton-Translocating ATPases/metabolism
17.
Kidney Int ; 92(2): 397-414, 2017 08.
Article in English | MEDLINE | ID: mdl-28385297

ABSTRACT

The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified.


Subject(s)
Blood Pressure , Homeostasis , Kidney Tubules/metabolism , Sodium Chloride, Dietary/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Animals , Epithelial Sodium Channels/metabolism , Heart Rate , Mice, Knockout , Sodium Chloride Symporters/metabolism
18.
Lab Invest ; 96(1): 98-111, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26552046

ABSTRACT

The small intestine is the major site for nutrient absorption that is critical in maintenance of euglycemia. Leptin, a key hormone involved in energy homeostasis, directly affects nutrient transport across the intestinal epithelium. Catestatin (CST), a 21-amino acid peptide derived from proprotein chromogranin A, has been shown to modulate leptin signaling. Therefore, we reasoned that leptin and CST could modulate intestinal Na(+)-glucose transporter 1 (SGLT1) expression in the context of obesity and diabetes. We found that hyperleptinemic db/db mice exhibit increased mucosal mass, associated with an enhanced proliferative response and decreased apoptosis in intestinal crypts, a finding absent in leptin-deficient ob/ob mice. Intestinal SGLT1 abundance was significantly decreased in hyperleptinemic but not leptin-deficient mice, indicating leptin regulation of SGLT1 expression. Phlorizin, a SGLT1/2 inhibitor, was without effect in an oral glucose tolerance test in db/db mice. The alterations in architecture and SGLT1 abundance were not accompanied by changes in the localization of intestinal alkaline phosphatase, indicating intact differentiation. Treatment of db/db mice with CST restored intestinal SGLT1 abundance and intestinal turnover, suggesting a cross-talk between leptin and CST, without affecting plasma leptin levels. Consistent with this hypothesis, we identified structural homology between CST and the AB-loop of leptin and protein-protein docking revealed binding of CST and leptin with the Ig-like binding site-III of the leptin receptor. In summary, downregulation of SGLT1 in an obese type 2 diabetic mouse model with hyperleptinemia is presumably mediated via the short form of the leptin receptor and reduces overt hyperglycemia.


Subject(s)
Chromogranin A/metabolism , Diabetes Mellitus, Experimental/metabolism , Leptin/metabolism , Peptide Fragments/metabolism , Sodium-Glucose Transporter 1/metabolism , Amino Acid Sequence , Animals , Apoptosis , Blood Glucose , Body Weight , Cell Proliferation , Chromogranin A/chemistry , Gene Knockout Techniques , Jejunum/metabolism , Leptin/chemistry , Male , Mice , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Sodium-Glucose Transporter 1/genetics
19.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1186-R1191, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27733387

ABSTRACT

The Na+/H+ exchanger isoform 3 (NHE3) facilitates Na+ absorption and H+ secretion and is expressed in the intestine, proximal tubule, and thick ascending limb of the kidney. While the function of NHE3 for Na+ and [Formula: see text](re)absorption has been defined using conventional NHE3 knockout mice (NHE3-/-), the recent generation of conditional NHE3 knockout mice started to give critical new insight into the role of this protein by allowing for temporal and spatial control of NHE3 expression. For example, in contrast to NHE3-/- mice, knockout of NHE3 in the S1 and S2 segments of the proximal tubule or along the entire tubule/collecting duct does not cause any lethality. Nonabsorbable NHE3 inhibitors have been developed, and preclinical as well as clinical trials indicate possible pharmacological use in fluid overload, hypertension, chronic kidney disease, hyperphosphatemia, and constipation. Some of the therapeutic considerations seem to be directly related to the pharmacodynamic properties of these drugs; however, little is known about the effects of these nonabsorbable NHE3 inhibitors on intestinal phosphate transport and the mechanisms so far remain elusive. This review focuses on novel findings of NHE3 in the intestine and the kidney as well as novel drug developments targeting NHE3.


Subject(s)
Intestinal Mucosa/metabolism , Kidney/metabolism , Protons , Sodium-Hydrogen Exchangers/metabolism , Sodium/metabolism , Water-Electrolyte Balance/physiology , Animals , Humans , Intestinal Absorption/physiology , Organ Specificity/physiology , Sodium-Hydrogen Exchanger 3 , Tissue Distribution
20.
Am J Physiol Renal Physiol ; 308(12): F1409-20, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25925253

ABSTRACT

Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.


Subject(s)
Caffeine/pharmacology , Diuresis/drug effects , Diuretics/pharmacology , Kidney Tubules/drug effects , Natriuresis/drug effects , Sodium-Hydrogen Exchangers/drug effects , Animals , Diuresis/genetics , Female , Glomerular Filtration Rate/drug effects , Kidney Tubules/metabolism , Male , Mice , Natriuresis/genetics , Sodium/metabolism , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL