Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Publication year range
1.
Cell ; 174(4): 884-896.e17, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30057119

ABSTRACT

Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Endocytosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Secretory Vesicles/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actins/chemistry , Cell Membrane/metabolism , Microscopy, Fluorescence , Models, Theoretical , Protein Conformation , Wiskott-Aldrich Syndrome Protein Family/chemistry
2.
Mol Cell ; 82(5): 933-949.e9, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120587

ABSTRACT

BAX and BAK are key apoptosis regulators that mediate the decisive step of mitochondrial outer membrane permeabilization. However, the mechanism by which they assemble the apoptotic pore remains obscure. Here, we report that BAX and BAK present distinct oligomerization properties, with BAK organizing into smaller structures with faster kinetics than BAX. BAK recruits and accelerates BAX assembly into oligomers that continue to grow during apoptosis. As a result, BAX and BAK regulate each other as they co-assemble into the same apoptotic pores, which we visualize. The relative availability of BAX and BAK molecules thereby determines the growth rate of the apoptotic pore and the relative kinetics by which mitochondrial contents, most notably mtDNA, are released. This feature of BAX and BAK results in distinct activation kinetics of the cGAS/STING pathway with implications for mtDNA-mediated paracrine inflammatory signaling.


Subject(s)
DNA, Mitochondrial , Mitochondria , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Protein Multimerization , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
3.
Nat Methods ; 21(6): 1082-1093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831208

ABSTRACT

The point spread function (PSF) of a microscope describes the image of a point emitter. Knowing the accurate PSF model is essential for various imaging tasks, including single-molecule localization, aberration correction and deconvolution. Here we present universal inverse modeling of point spread functions (uiPSF), a toolbox to infer accurate PSF models from microscopy data, using either image stacks of fluorescent beads or directly images of blinking fluorophores, the raw data in single-molecule localization microscopy (SMLM). Our modular framework is applicable to a variety of microscope modalities and the PSF model incorporates system- or sample-specific characteristics, for example, the bead size, field- and depth- dependent aberrations, and transformations among channels. We demonstrate its application in single or multiple channels or large field-of-view SMLM systems, 4Pi-SMLM, and lattice light-sheet microscopes using either bead data or single-molecule blinking data.


Subject(s)
Microscopy, Fluorescence , Single Molecule Imaging , Single Molecule Imaging/methods , Microscopy, Fluorescence/methods , Algorithms , Image Processing, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Models, Theoretical
4.
EMBO J ; 41(8): e108587, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35023587

ABSTRACT

The apoptotic executioner protein BAX and the dynamin-like protein DRP1 co-localize at mitochondria during apoptosis to mediate mitochondrial permeabilization and fragmentation. However, the molecular basis and functional consequences of this interplay remain unknown. Here, we show that BAX and DRP1 physically interact, and that this interaction is enhanced during apoptosis. Complex formation between BAX and DRP1 occurs exclusively in the membrane environment and requires the BAX N-terminal region, but also involves several other BAX surfaces. Furthermore, the association between BAX and DRP1 enhances the membrane activity of both proteins. Forced dimerization of BAX and DRP1 triggers their activation and translocation to mitochondria, where they induce mitochondrial remodeling and permeabilization to cause apoptosis even in the absence of apoptotic triggers. Based on this, we propose that DRP1 can promote apoptosis by acting as noncanonical direct activator of BAX through physical contacts with its N-terminal region.


Subject(s)
Apoptosis , Dynamins , Apoptosis/physiology , Dynamins/genetics , Dynamins/metabolism , Mitochondria/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
5.
Nat Methods ; 20(1): 139-148, 2023 01.
Article in English | MEDLINE | ID: mdl-36522500

ABSTRACT

Quantitative data analysis is important for any single-molecule localization microscopy (SMLM) workflow to extract biological insights from the coordinates of the single fluorophores. However, current approaches are restricted to simple geometries or require identical structures. Here, we present LocMoFit (Localization Model Fit), an open-source framework to fit an arbitrary model to localization coordinates. It extracts meaningful parameters from individual structures and can select the most suitable model. In addition to analyzing complex, heterogeneous and dynamic structures for in situ structural biology, we demonstrate how LocMoFit can assemble multi-protein distribution maps of six nuclear pore components, calculate single-particle averages without any assumption about geometry or symmetry, and perform a time-resolved reconstruction of the highly dynamic endocytic process from static snapshots. We provide extensive simulation and visualization routines to validate the robustness of LocMoFit and tutorials to enable any user to increase the information content they can extract from their SMLM data.


Subject(s)
Fluorescent Dyes , Single Molecule Imaging , Likelihood Functions , Fluorescent Dyes/chemistry
6.
Nat Methods ; 20(3): 459-468, 2023 03.
Article in English | MEDLINE | ID: mdl-36823335

ABSTRACT

Single-molecule localization microscopy in a typical wide-field setup has been widely used for investigating subcellular structures with super resolution; however, field-dependent aberrations restrict the field of view (FOV) to only tens of micrometers. Here, we present a deep-learning method for precise localization of spatially variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern sCMOS camera. Using a graphic processing unit-based vectorial point spread function (PSF) fitter, we can fast and accurately model the spatially variant PSF of a high numerical aperture objective in the entire FOV. Combined with deformable mirror-based optimal PSF engineering, we demonstrate high-accuracy three-dimensional single-molecule localization microscopy over a volume of ~180 × 180 × 5 µm3, allowing us to image mitochondria and nuclear pore complexes in entire cells in a single imaging cycle without hardware scanning; a 100-fold increase in throughput compared to the state of the art.


Subject(s)
Deep Learning , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods
7.
Nat Methods ; 18(9): 1082-1090, 2021 09.
Article in English | MEDLINE | ID: mdl-34480155

ABSTRACT

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Animals , COS Cells , Chlorocebus aethiops , Databases, Factual , Software
8.
Bioinformatics ; 39(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37756700

ABSTRACT

MOTIVATION: The nuclear pore complex (NPC) is the only passageway for macromolecules between nucleus and cytoplasm, and an important reference standard in microscopy: it is massive and stereotypically arranged. The average architecture of NPC proteins has been resolved with pseudoatomic precision, however observed NPC heterogeneities evidence a high degree of divergence from this average. Single-molecule localization microscopy (SMLM) images NPCs at protein-level resolution, whereupon image analysis software studies NPC variability. However, the true picture of this variability is unknown. In quantitative image analysis experiments, it is thus difficult to distinguish intrinsically high SMLM noise from variability of the underlying structure. RESULTS: We introduce CIR4MICS ('ceramics', Configurable, Irregular Rings FOR MICroscopy Simulations), a pipeline that synthesizes ground truth datasets of structurally variable NPCs based on architectural models of the true NPC. Users can select one or more N- or C-terminally tagged NPC proteins, and simulate a wide range of geometric variations. We also represent the NPC as a spring-model such that arbitrary deforming forces, of user-defined magnitudes, simulate irregularly shaped variations. Further, we provide annotated reference datasets of simulated human NPCs, which facilitate a side-by-side comparison with real data. To demonstrate, we synthetically replicate a geometric analysis of real NPC radii and reveal that a range of simulated variability parameters can lead to observed results. Our simulator is therefore valuable to test the capabilities of image analysis methods, as well as to inform experimentalists about the requirements of hypothesis-driven imaging studies. AVAILABILITY AND IMPLEMENTATION: Code: https://github.com/uhlmanngroup/cir4mics. Simulated data: BioStudies S-BSST1058.


Subject(s)
Microscopy , Nuclear Pore , Humans , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/analysis , Nuclear Pore Complex Proteins/metabolism , Single Molecule Imaging/methods , Software
9.
Nat Methods ; 17(9): 909-912, 2020 09.
Article in English | MEDLINE | ID: mdl-32807954

ABSTRACT

High laser powers are common practice in single-molecule localization microscopy to speed up data acquisition. Here we systematically quantified how excitation intensity influences localization precision and labeling density, the two main factors determining data quality. We found a strong trade-off between imaging speed and quality and present optimized imaging protocols for high-throughput, multicolor and three-dimensional single-molecule localization microscopy with greatly improved resolution and effective labeling efficiency.


Subject(s)
Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Carbocyanines , Cell Line, Tumor , Humans , Time Factors
10.
Nat Methods ; 17(2): 217-224, 2020 02.
Article in English | MEDLINE | ID: mdl-31932776

ABSTRACT

The ultimate goal of biological super-resolution fluorescence microscopy is to provide three-dimensional resolution at the size scale of a fluorescent marker. Here we show that by localizing individual switchable fluorophores with a probing donut-shaped excitation beam, MINFLUX nanoscopy can provide resolutions in the range of 1 to 3 nm for structures in fixed and living cells. This progress has been facilitated by approaching each fluorophore iteratively with the probing-donut minimum, making the resolution essentially uniform and isotropic over scalable fields of view. MINFLUX imaging of nuclear pore complexes of a mammalian cell shows that this true nanometer-scale resolution is obtained in three dimensions and in two color channels. Relying on fewer detected photons than standard camera-based localization, MINFLUX nanoscopy is poised to open a new chapter in the imaging of protein complexes and distributions in fixed and living cells.


Subject(s)
Color , Microscopy, Fluorescence/methods , Animals , Fluorescent Dyes/chemistry , Humans , Image Processing, Computer-Assisted
11.
Nat Methods ; 17(2): 225-231, 2020 02.
Article in English | MEDLINE | ID: mdl-31907447

ABSTRACT

Combining the molecular specificity of fluorescent probes with three-dimensional imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a 4Pi single-molecule switching super-resolution microscope that enables ratiometric multicolor imaging of mammalian cells at 5-10-nm localization precision in three dimensions using 'salvaged fluorescence'. Imaging two or three fluorophores simultaneously, we show fluorescence images that resolve the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. The salvaged fluorescence approach is equally applicable in most single-objective microscopes.


Subject(s)
Optical Imaging , Subcellular Fractions/metabolism , Animals , Humans , Organelles/metabolism
13.
Nat Methods ; 16(10): 1045-1053, 2019 10.
Article in English | MEDLINE | ID: mdl-31562488

ABSTRACT

Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements.


Subject(s)
Microscopy, Fluorescence/standards , Nuclear Pore , Cell Line , Humans , Microscopy, Fluorescence/methods , Reference Standards
14.
Nat Methods ; 16(5): 387-395, 2019 05.
Article in English | MEDLINE | ID: mdl-30962624

ABSTRACT

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Software , Algorithms
15.
Nat Methods ; 16(6): 561, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31097821

ABSTRACT

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

16.
Nano Lett ; 21(1): 507-514, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33305952

ABSTRACT

When T-cells probe their environment for antigens, the bond between the T-cell receptor (TCR) and the peptide-loaded major histocompatibility complex (MHC) is put under tension, thereby influencing the antigen discrimination. Yet, the quantification of such forces in the context of T-cell signaling is technically challenging. Here, we developed a traction force microscopy platform which allows for quantifying the pulls and pushes exerted via T-cell microvilli, in both tangential and normal directions, during T-cell activation. We immobilized specific T-cell activating antibodies on the marker beads used to read out the hydrogel deformation. Microvilli targeted the functionalized beads, as confirmed by superresolution microscopy of the local actin organization. Moreover, we found that cellular components, such as actin, TCR, and CD45 reorganize upon interaction with the beads, such that actin forms a vortex-like ring structure around the beads and TCR is enriched at the bead surface, whereas CD45 is excluded from bead-microvilli contacts.


Subject(s)
Lymphocyte Activation , Traction , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes
17.
Nano Lett ; 21(3): 1213-1220, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33253583

ABSTRACT

Inferring the organization of fluorescently labeled nanosized structures from single molecule localization microscopy (SMLM) data, typically obscured by stochastic noise and background, remains challenging. To overcome this, we developed a method to extract high-resolution ordered features from SMLM data that requires only a low fraction of targets to be localized with high precision. First, experimentally measured localizations are analyzed to produce relative position distributions (RPDs). Next, model RPDs are constructed using hypotheses of how the molecule is organized. Finally, a statistical comparison is used to select the most likely model. This approach allows pattern recognition at sub-1% detection efficiencies for target molecules, in large and heterogeneous samples and in 2D and 3D data sets. As a proof-of-concept, we infer ultrastructure of Nup107 within the nuclear pore, DNA origami structures, and α-actinin-2 within the cardiomyocyte Z-disc and assess the quality of images of centrioles to improve the averaged single-particle reconstruction.


Subject(s)
DNA , Single Molecule Imaging
18.
J Am Chem Soc ; 143(36): 14592-14600, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34460256

ABSTRACT

Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, and an adjustment of the equilibrium poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows one to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell-stimulated emission depletion (STED) microscopy or a spontaneously blinking dye for single-molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.

19.
Nat Methods ; 15(5): 367-369, 2018 05.
Article in English | MEDLINE | ID: mdl-29630062

ABSTRACT

We present a real-time fitter for 3D single-molecule localization microscopy using experimental point spread functions (PSFs) that achieves minimal uncertainty in 3D on any microscope and is compatible with any PSF engineering approach. We used this method to image cellular structures and attained unprecedented image quality for astigmatic PSFs. The fitter compensates for most optical aberrations and makes accurate 3D super-resolution microscopy broadly accessible, even on standard microscopes without dedicated 3D optics.


Subject(s)
Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Animals , Cell Line , Optics and Photonics , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL