Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Methods ; 20(9): 1388-1399, 2023 09.
Article in English | MEDLINE | ID: mdl-37474806

ABSTRACT

Homology-directed repair (HDR), a method for repair of DNA double-stranded breaks can be leveraged for the precise introduction of mutations supplied by synthetic DNA donors, but remains limited by low efficiency and off-target effects. In this study, we report HDRobust, a high-precision method that, via the combined transient inhibition of nonhomologous end joining and microhomology-mediated end joining, resulted in the induction of point mutations by HDR in up to 93% (median 60%, s.e.m. 3) of chromosomes in populations of cells. We found that, using this method, insertions, deletions and rearrangements at the target site, as well as unintended changes at other genomic sites, were largely abolished. We validated this approach for 58 different target sites and showed that it allows efficient correction of pathogenic mutations in cells derived from patients suffering from anemia, sickle cell disease and thrombophilia.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Recombinational DNA Repair , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA
2.
Proc Natl Acad Sci U S A ; 120(49): e2305773120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011552

ABSTRACT

Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.


Subject(s)
Glucocorticoids , Mental Disorders , Humans , High-Throughput Screening Assays , Regulatory Sequences, Nucleic Acid , Quantitative Trait Loci , Mental Disorders/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Predisposition to Disease
3.
Nat Methods ; 19(1): 90-99, 2022 01.
Article in English | MEDLINE | ID: mdl-34969984

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enable highly resolved descriptions of cell states within these systems; however, approaches are needed to directly measure lineage relationships. Here we establish iTracer, a lineage recorder that combines reporter barcodes with inducible CRISPR-Cas9 scarring and is compatible with single-cell and spatial transcriptomics. We apply iTracer to explore clonality and lineage dynamics during cerebral organoid development and identify a time window of fate restriction as well as variation in neurogenic dynamics between progenitor neuron families. We also establish long-term four-dimensional light-sheet microscopy for spatial lineage recording in cerebral organoids and confirm regional clonality in the developing neuroepithelium. We incorporate gene perturbation (iTracer-perturb) and assess the effect of mosaic TSC2 mutations on cerebral organoid development. Our data shed light on how lineages and fates are established during cerebral organoid formation. More broadly, our techniques can be adapted in any iPSC-derived culture system to dissect lineage alterations during normal or perturbed development.


Subject(s)
Cerebral Cortex/cytology , Genes, Reporter , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Single-Cell Analysis/methods , CRISPR-Cas Systems , Cell Lineage , Humans , Microscopy/methods , Mutation , Neurons/cytology , Neurons/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, RNA , Tuberous Sclerosis Complex 2 Protein/genetics
4.
Nucleic Acids Res ; 51(5): e26, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36620901

ABSTRACT

CRISPR nucleases can introduce double-stranded DNA breaks in genomes at positions specified by guide RNAs. When repaired by the cell, this may result in the introduction of insertions and deletions or nucleotide substitutions provided by exogenous DNA donors. However, cellular repair can also result in unintended on-target effects, primarily larger deletions and loss of heterozygosity due to gene conversion. Here we present a strategy that allows easy and reliable detection of unintended on-target effects as well as the generation of control cells that carry wild-type alleles but have demonstratively undergone genome editing at the target site. Our 'sequence-ascertained favorable editing' (SAFE) donor approach relies on the use of DNA donor mixtures containing the desired nucleotide substitutions or the wild-type alleles together with combinations of additional 'diagnostic' substitutions unlikely to have any effects. Sequencing of the target sites then results in that two different sequences are seen when both chromosomes are edited with 'SAFE' donors containing different sets of substitutions, while a single sequence indicates unintended effects such as deletions or gene conversion. We analyzed more than 850 human embryonic stem cell clones edited with 'SAFE' donors and detect all copy number changes and almost all clones with gene conversion.


Subject(s)
CRISPR-Cas Systems , DNA Mutational Analysis , Gene Editing , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , DNA/genetics , Gene Editing/methods , Nucleotides , Embryonic Stem Cells
5.
Nucleic Acids Res ; 47(19): e116, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31392986

ABSTRACT

When double-strand breaks are introduced in a genome by CRISPR they are repaired either by non-homologous end joining (NHEJ), which often results in insertions or deletions (indels), or by homology-directed repair (HDR), which allows precise nucleotide substitutions to be introduced if a donor oligonucleotide is provided. Because NHEJ is more efficient than HDR, the frequency with which precise genome editing can be achieved is so low that simultaneous editing of more than one gene has hitherto not been possible. Here, we introduced a mutation in the human PRKDC gene that eliminates the kinase activity of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). This results in an increase in HDR irrespective of cell type and CRISPR enzyme used, sometimes allowing 87% of chromosomes in a population of cells to be precisely edited. It also allows for precise editing of up to four genes simultaneously (8 chromosomes) in the same cell. Transient inhibition of DNA-PKcs by the kinase inhibitor M3814 is similarly able to enhance precise genome editing.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Activated Protein Kinase/genetics , Gene Editing/methods , Recombinational DNA Repair/genetics , CRISPR-Cas Systems/genetics , Chromosomes , DNA End-Joining Repair/genetics , HEK293 Cells , Humans , INDEL Mutation/genetics , Oligonucleotides/genetics , Sequence Deletion/genetics
6.
Bioconjug Chem ; 30(4): 1169-1174, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30883092

ABSTRACT

The incorporation of clickable noncanonical amino acids (ncAAs) has proven to an invaluable tool in chemical biology and protein science research. Nevertheless, the number of examples in which the method is used for preparative purposes is extremely limited. We report the synthesis of an active enzyme by quantitative, Cu(I)-catalyzed ligation of two inactive protein halves, expressed and equipped with an azide and alkyne moiety, respectively, through ncAA incorporation. The reported quantitative conversion is exceptional given the large size of the protein fragments and the fact that no linker or excess of either of the polypeptides was used. The triazole bridge formed between the ncAA side chains was shown to effectively mimic a natural protein loop, providing an enzyme with the same activity as its natural counterpart. We envision that this strategy, termed split-click protein chemistry, can be used for the production of proteins that are difficult to express as full-length entities. It also paves the way for the design of new proteins with tailor-made functionalities.


Subject(s)
Click Chemistry , Enzymes/chemical synthesis , Alkynes/chemistry , Amino Acids/chemistry , Azides/chemistry , Catalysis , Triazoles/chemistry
7.
Nat Commun ; 13(1): 489, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35078986

ABSTRACT

The first step in CRISPR-Cas9-mediated genome editing is the cleavage of target DNA sequences that are complementary to so-called spacer sequences in CRISPR guide RNAs (gRNAs). However, some DNA sequences are refractory to CRISPR-Cas9 cleavage, which is at least in part due to gRNA misfolding. To overcome this problem, we have engineered gRNAs with highly stable hairpins in their constant parts and further enhanced their stability by chemical modifications. The 'Genome-editing Optimized Locked Design' (GOLD)-gRNA increases genome editing efficiency up to around 1000-fold (from 0.08 to 80.5%) with a mean increase across different other targets of 7.4-fold. We anticipate that this improved gRNA will allow efficient editing regardless of spacer sequence composition and will be especially useful if a desired genomic site is difficult to edit.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Genome , Nucleic Acid Conformation , Oligonucleotides/chemistry , RNA, Guide, Kinetoplastida/chemistry , Cell Line , Humans , RNA, Guide, Kinetoplastida/genetics
8.
Science ; 377(6611): eabl6422, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36074851

ABSTRACT

Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.


Subject(s)
Neanderthals , Neocortex , Neurogenesis , Transketolase , Animals , Ependymoglial Cells/cytology , Ferrets , Humans , Mice , Neanderthals/embryology , Neanderthals/genetics , Neocortex/embryology , Neurogenesis/genetics , Neurogenesis/physiology , Transketolase/genetics , Transketolase/metabolism
9.
Sci Adv ; 8(30): eabn7702, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35905187

ABSTRACT

Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.


Subject(s)
Hominidae , Neanderthals , Animals , Brain , Chromosome Segregation/genetics , Humans , Kinesins , Metaphase , Mice , Neanderthals/genetics
10.
Nat Commun ; 12(1): 1467, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674580

ABSTRACT

Efforts to contain the spread of SARS-CoV-2 have spurred the need for reliable, rapid, and cost-effective diagnostic methods which can be applied to large numbers of people. However, current standard protocols for the detection of viral nucleic acids while sensitive, require a high level of automation and sophisticated laboratory equipment to achieve throughputs that allow whole communities to be tested on a regular basis. Here we present Cap-iLAMP (capture and improved loop-mediated isothermal amplification) which combines a hybridization capture-based RNA extraction of gargle lavage samples with an improved colorimetric RT-LAMP assay and smartphone-based color scoring. Cap-iLAMP is compatible with point-of-care testing and enables the detection of SARS-CoV-2 positive samples in less than one hour. In contrast to direct addition of the sample to improved LAMP (iLAMP), Cap-iLAMP prevents false positives and allows single positive samples to be detected in pools of 25 negative samples, reducing the reagent cost per test to ~1 Euro per individual.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Colorimetry/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Hybridization/methods , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Coronavirus Nucleocapsid Proteins/genetics , Humans , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
11.
Science ; 374(6565): eabi6060, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34648345

ABSTRACT

Trujillo et al. (Research Articles, 12 February 2021, eaax2537) conclude that the reintroduction of an ancestral amino acid substitution in the protein NOVA1 drastically alters the development of brain organoids. We show that cell lines used by the authors carry heterozygous deletions of the target DNA sequence, providing another plausible explanation for the effects observed.


Subject(s)
Organoids
12.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33942714

ABSTRACT

We analyze the metabolomes of humans, chimpanzees, and macaques in muscle, kidney and three different regions of the brain. Although several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution contributes to much or all of the reduction of de novo synthesis of purines in humans.


Subject(s)
Biosynthetic Pathways/genetics , Metabolome/genetics , Neanderthals/metabolism , Purines/biosynthesis , Purines/metabolism , Animals , Female , Gene Editing , Humans , Macaca/metabolism , Male , Mice , Mice, Transgenic , Mutation, Missense , Pan troglodytes/metabolism
13.
PLoS One ; 15(12): e0244824, 2020.
Article in English | MEDLINE | ID: mdl-33382830

ABSTRACT

SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast screening method based on direct RT-qPCR to detect SARS-CoV-2 in single or pooled gargle lavages ("mouthwashes"). This method detects individuals with large viral loads (Ct≤29) and we use it to test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches can be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Mass Screening , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans
14.
Nat Med ; 25(4): 561-568, 2019 04.
Article in English | MEDLINE | ID: mdl-30858616

ABSTRACT

Malformations of the human cortex represent a major cause of disability1. Mouse models with mutations in known causal genes only partially recapitulate the phenotypes and are therefore not unlimitedly suited for understanding the molecular and cellular mechanisms responsible for these conditions2. Here we study periventricular heterotopia (PH) by analyzing cerebral organoids derived from induced pluripotent stem cells (iPSCs) of patients with mutations in the cadherin receptor-ligand pair DCHS1 and FAT4 or from isogenic knockout (KO) lines1,3. Our results show that human cerebral organoids reproduce the cortical heterotopia associated with PH. Mutations in DCHS1 and FAT4 or knockdown of their expression causes changes in the morphology of neural progenitor cells and result in defective neuronal migration dynamics only in a subset of neurons. Single-cell RNA-sequencing (scRNA-seq) data reveal a subpopulation of mutant neurons with dysregulated genes involved in axon guidance, neuronal migration and patterning. We suggest that defective neural progenitor cell (NPC) morphology and an altered navigation system in a subset of neurons underlie this form of PH.


Subject(s)
Cell Movement , Cerebrum/pathology , Neurons/pathology , Organoids/pathology , Periventricular Nodular Heterotopia/pathology , Cadherin Related Proteins , Cadherins/genetics , Cell Line , Humans , Infant, Newborn , Mutation/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Time-Lapse Imaging , Tumor Suppressor Proteins/genetics
15.
Nat Commun ; 9(1): 2164, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867139

ABSTRACT

A now frequently used method to edit mammalian genomes uses the nucleases CRISPR/Cas9 and CRISPR/Cpf1 or the nickase CRISPR/Cas9n to introduce double-strand breaks which are then repaired by homology-directed repair using DNA donor molecules carrying desired mutations. Using a mixture of small molecules, the "CRISPY" mix, we achieve a 2.8- to 7.2-fold increase in precise genome editing with Cas9n, resulting in the introduction of the intended nucleotide substitutions in almost 50% of chromosomes or of gene encoding a blue fluorescent protein in 27% of cells, to our knowledge the highest editing efficiency in human induced pluripotent stem cells described to date. Furthermore, the CRISPY mix improves precise genome editing with Cpf1 2.3- to 4.0-fold, allowing almost 20% of chromosomes to be edited. The components of the CRISPY mix do not always increase the editing efficiency in the immortalized or primary cell lines tested, suggesting that employed repair pathways are cell-type specific.


Subject(s)
DNA Repair/drug effects , Gene Editing , Pluripotent Stem Cells/drug effects , Small Molecule Libraries/pharmacology , Animals , CRISPR-Cas Systems , Cell Line , DNA Breaks, Double-Stranded , DNA Repair/genetics , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , K562 Cells , Models, Genetic , Mutation , Pluripotent Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL