Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Commun Signal ; 22(1): 297, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807218

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress-mediated increases in the hepatic levels of the very low-density lipoprotein (VLDL) receptor (VLDLR) promote hepatic steatosis by increasing the delivery of triglyceride-rich lipoproteins to the liver. Here, we examined whether the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) regulates hepatic lipid accumulation by modulating VLDLR levels and the subsequent uptake of triglyceride-rich lipoproteins. METHODS: Rats fed with fructose in drinking water, Sirt1-/- mice, mice treated with the ER stressor tunicamycin with or without a SIRT1 activator, and human Huh-7 hepatoma cells transfected with siRNA or exposed to tunicamycin or different inhibitors were used. RESULTS: Hepatic SIRT1 protein levels were reduced, while those of VLDLR were upregulated in the rat model of metabolic dysfunction-associated steatotic liver disease (MASLD) induced by fructose-drinking water. Moreover, Sirt1-/- mice displayed increased hepatic VLDLR levels that were not associated with ER stress, but were accompanied by an increased expression of hypoxia-inducible factor 1α (HIF-1α)-target genes. The pharmacological inhibition or gene knockdown of SIRT1 upregulated VLDLR protein levels in the human Huh-7 hepatoma cell line, with this increase abolished by the pharmacological inhibition of HIF-1α. Finally, SIRT1 activation prevented the increase in hepatic VLDLR protein levels in mice treated with the ER stressor tunicamycin. CONCLUSIONS: Overall, these findings suggest that SIRT1 attenuates fatty liver development by modulating hepatic VLDLR levels.


Subject(s)
Liver , Receptors, LDL , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Humans , Liver/metabolism , Liver/drug effects , Receptors, LDL/metabolism , Receptors, LDL/genetics , Mice , Male , Endoplasmic Reticulum Stress/drug effects , Rats , Cell Line, Tumor , Mice, Knockout , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Mice, Inbred C57BL , Tunicamycin/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL