Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240023

ABSTRACT

The main strategy of this study was to combine the traditional perspective of using medicinal extracts with polymeric scaffolds manufactured by an engineering approach to fabricate a potential dressing product with antimicrobial properties. Thus, chitosan-based membranes containing S. officinalis and H. perforatum extracts were developed and their suitability as novel dressing materials was investigated. The morphology of the chitosan-based films was assessed by scanning electron microscopy (SEM) and the chemical structure characterization was performed via Fourier transform infrared spectroscopy (FTIR). The addition of the plant extracts increased the sorption capacity of the studied fluids, mainly at the membrane with S. officinalis extract. The membranes with 4% chitosan embedded with both plant extracts maintained their integrity after being immersed for 14 days in incubation media, especially in PBS. The antibacterial activities were determined by the modified Kirby-Bauer disk diffusion method for Gram-positive (S. aureus ATCC 25923, MRSA ATCC 43300) and Gram-negative (E. coli ATCC 25922, P. aeruginosa ATCC 27853) microorganisms. The antibacterial property was enhanced by incorporating the plant extracts into chitosan films. The outcome of the study reveals that the obtained chitosan-based membranes are promising candidates to be used as a wound dressing due to their good physico-chemical and antimicrobial properties.


Subject(s)
Anti-Infective Agents , Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus , Escherichia coli , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Molecules ; 28(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570620

ABSTRACT

The design and manufacture of innovative multifunctional materials possessing superior characteristics, quality and standards, rigorously required for future development of existing or emerging advanced technologies, is of great importance. These materials should have a very low degree of influence (or none) on the environmental and human health. Adjusting the properties of epoxy resins with organophosphorus compounds and silver-containing additives is key to the simultaneous improvement of the flame-resistant and antimicrobial properties of advanced epoxy-based materials. These environmentally friendly epoxy resin nanocomposites were manufactured using two additives, a reactive phosphorus-containing bisphenol derived from vanillin, namely, (4-(((4-hidroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)-2-methoxyphenyl) phenylphosphonate (BPH), designed as both cross-linking agent and a flame-retardant additive for epoxy resin; and additional silver-loaded zeolite L nanoparticles (Ze-Ag NPs) used as a doping additive to impart antimicrobial activity. The effect of BPH and Ze-Ag NPs content on the structural, morphological, thermal, flame resistance and antimicrobial characteristics of thermosetting epoxy nanocomposites was investigated. The structure and morphology of epoxy nanocomposites were investigated via FTIR spectroscopy and scanning electron microscopy (SEM). In general, the nanocomposites had a glassy and homogeneous morphology. The samples showed a single glass transition temperature in the range of 166-194 °C and an initiation decomposition temperature in the range of 332-399 °C. The introduction of Ze-Ag NPs in a concentration of 7-15 wt% provided antimicrobial activity to epoxy thermosets.

3.
Molecules ; 27(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35011449

ABSTRACT

Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of -10.8 and -14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Silver/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Green Chemistry Technology , Metal Nanoparticles/ultrastructure , Phenols/chemistry , Spectrum Analysis
4.
Saudi Pharm J ; 28(10): 1172-1181, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33132710

ABSTRACT

Combination of antibiotics with natural products is a promising strategy for potentiating antibiotic activity and overcoming antibiotic resistance. The purpose of the present study was to investigate whether morusin and kuwanon G, prenylated phenolics in Morus species, have the ability to enhance antibiotic activity and reverse antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. Commonly used antibiotics (oxacillin, erythromycin, gentamicin, ciprofloxacin, tetracycline, clindamycin) were selected for the combination studies. Checkerboard and time-kill assays were used to investigate potential bacteriostatic and bactericidal synergistic interactions, respectively between morusin or kuwanon G and antibiotics. According to both fractional inhibitory concentration index and response surface models, twenty combinations (14 morusin-antibiotic combinations, six kuwanon G-antibiotic combinations) displaying bacteriostatic synergy were identified, with 4-512-fold reduction in the minimum inhibitory concentration values of antibiotics in combination. Both morusin and kuwanon G reversed oxacillin resistance of methicillin-resistant Staphylococcus aureus. In addition, morusin reversed tetracycline resistance of Staphylococcus epidermidis. At half of the minimum inhibitory concentrations, combinations of morusin with oxacillin or gentamicin showed bactericidal synergy against methicillin-resistant Staphylococcus aureus. Fluorescence and differential interference contrast microscopy and scanning electron microscopy showed an increase in the membrane permeability and massive leakage of cellular content in methicillin-resistant Staphylococcus aureus exposed to morusin or kuwanon G. Overall, our findings strongly indicate that both prenylated compounds are good candidates for the development of novel antibacterial combination therapies.

5.
Polymers (Basel) ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891450

ABSTRACT

Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes' functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications. Thus, the viscosity of the solutions used in the electrospinning process was determined, and the morphology of the electrospun membranes was examined using scanning electron microscopy (SEM). Investigations on the surfaces of electrospun membranes based on water vapor sorption data have demonstrated that their surface properties dictate their biological ability more than their specific surfaces. Furthermore, in order to understand the different macromolecular rearrangements of membrane structures caused by physical interactions between the polymeric chains as well as by the orientation of functional groups during the electrospinning process, Fourier transform infrared (FTIR) spectroscopy was used. The applicability of composite membranes in the biomedical field was established by bacterial adhesion testing on the surface of electrospun membranes using Escherichia coli and Staphylococcus aureus microorganisms. The biological experiments conducted establish a foundation for future applications of these membranes and validate their effectiveness in specific fields.

6.
Animals (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891599

ABSTRACT

This study investigates the impact of including sorghum in the diet of the common carp (Cyprinus carpio) on its growth, blood parameters, meat composition, intestinal microbiota, and oxidative stress. Experimental diets with varying sorghum content (0%-V0 or control, 10%-V1, 20%-V2, and 30%-V3) were administered to carp weighing 43 g initially. Notably, in the 30% variant, sorghum entirely replaced corn and barley in the diet. Chemical analysis of sorghum unveiled a protein content of 14% and a fat content of 3.9%. Sorghum inclusion led to a decline in final body weight and weight gain, particularly notable in the V3 group with 30% sorghum. However, other physiological parameters, such as feed conversion ratio, specific growth rate, and organ indices, remained unaffected. Protein and salt content in carp flesh increased with higher sorghum inclusion levels, while hematological parameters showed minimal variations. Analysis of the intestinal microbiota revealed increases in both aerobic and anaerobic bacterial populations with sorghum inclusion. Furthermore, sorghum concentration inversely correlated with glutathione levels and positively correlated with malondialdehyde content, indicating a disruption of antioxidant defense mechanisms and elevated oxidative stress.

7.
Plants (Basel) ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674549

ABSTRACT

Non-thermal plasma (NTP) has proven to be a green method in the agricultural field for the stimulation of germination, growth, and production of nutraceutical compounds in some cases. However, the process is far from being fully understood and depends on the targeted plant species and the NTP used. In this work, we focus on the production of alfalfa sprouts from NTP-treated seeds under different voltage conditions. A flexible electrode configuration was used to produce the NTP, which can also be placed on packages for in-package treatments. The surface of the seeds was analyzed, indicating that the microstructure was strongly affected by NTP treatment. Biometric measurements evidenced the possibility of stimulating the sprout growth in some conditions by up to 50% compared to the sprouts obtained from untreated seeds. Biochemical traits for the sprouts obtained in different processing conditions were also studied, such as the concentrations of chlorophyll pigments, flavonoids and polyphenols, and antioxidant activity. Most NTP treatments led to inhibitory effects, proving the strong dependence between NTP treatment and targeted plant species.

8.
Polymers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850167

ABSTRACT

Development of new biomaterials based on polysulfones tailored to act in various biomedical fields represents a promising strategy which provides an opportunity for enhancing the diagnosis, prevention, and treatment of specific illnesses. To meet these requirements, structural modification of the polysulfones is essential. In this context, for design of new materials with long-term stability, enhanced workability, compatibility with biological materials and good antimicrobial activity, the functionalization of chloromethylated polysulfones with triethylphosphonium pendant groups (PSFEtP+) was adopted. The surface chemistry analysis (Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX)), rheological properties, morphological aspects (Scanning electron microscopy (SEM), polarized light microscopy (POM)), and antimicrobial activity of the synthetized polysulfone were investigated to establish the relationship between its structure and properties, as an important indicator for targeted applications. Based on the obtained features, evaluated by the relationship between the rheological properties and microstructural aspects, and also the response at the biomaterial-bacteria interface, these qualities have been confirmed in their performance, in terms of thermal stability, antimicrobial activity, and also an increase in lifetime. Consequently, derived results constitute the preliminary basis for future tests concerning their functionality as gel matrices in biomedical devices.

9.
J Mech Behav Biomed Mater ; 144: 106002, 2023 08.
Article in English | MEDLINE | ID: mdl-37402341

ABSTRACT

Cellulose acetate is of remarkable scientific interest, becoming more useful when is used in obtaining of the composite materials containing nanoparticles, as result of its improved properties. Thus, cellulose acetate/silica composite films obtained by casting the solutions of cellulose acetate (CA)/tetraethyl orthosilicate (TEOS) in different mixing ratios were analyzed in this paper. The impact of TEOS addition, and implicitly of the silica nanoparticles on the mechanical strength, water vapor sorption properties and antimicrobial activity of the cellulose acetate/silica films were mainly monitored. The results of the tensile strength tests were discussed in correlation with data obtained from Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. It was found that samples with low TEOS content show improved mechanical strength compared to samples with high amounts of TEOS. The microstructural characteristics of the studied films affect their moisture sorption capacity so that the weight of the adsorbed water increases with the addition of TEOS. These features are complemented with the antimicrobial activity against Staphylococcus aureus and Escherichia coli bacterial species. The obtained data show that the cellulose acetate/silica films, and especially those with low silica content have improved properties that can recommend them for applications in the biomedical field.


Subject(s)
Anti-Infective Agents , Silicon Dioxide , Silicon Dioxide/chemistry , Tensile Strength , Cellulose/chemistry , Anti-Infective Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
10.
Pharmaceutics ; 15(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37376122

ABSTRACT

The therapeutic efficiency of plant extracts has been limited by their poor pharmaceutical availability. Hydrogels have promising potential to be applied as wound dressings due to their high capacity to absorb exudates and their enhanced performance in loading and releasing plant extracts. In this work, pullulan/poly (vinyl alcohol) (P/PVA) hydrogels were first prepared using an eco-friendly method based on both a covalent and physical cross-linking approach. Then, the hydrogels were loaded with the hydroalcoholic extract of Calendula officinalis by a simple post-loading immersion method. Different loading capacities were investigated in terms of the physico-chemical properties, chemical composition, mechanical properties, and water absorption. The hydrogels exhibited high loading efficiency due to the hydrogen bonding interactions between polymer and extract. The water retention capacity as well as the mechanical properties decreased with the increase in the extract amount in hydrogel. However, higher amounts of extract in the hydrogel improved the bioadhesiveness. The release of extract from hydrogels was controlled by the Fickian diffusion mechanism. Extract-loaded hydrogels expressed high antioxidant activity, reaching 70% DPPH radical scavenging after 15 min immersion in buffer solution at pH 5.5. Additionally, loaded hydrogels showed a high antibacterial activity against Gram-positive and Gram-negative bacteria and were non-cytotoxic against HDFa cells.

11.
Vet Sci ; 10(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37999465

ABSTRACT

Pseudomonas aeruginosa is a highly pathogenic bacterium with high pathogenicity, that can cause serious infections in all species and especially in dogs. Treatment of the infection induced by this bacterium can be a challenge considering that some strains have developed resistance to most classes of antimicrobials. The use of bacteriophages to alleviate infections caused by Pseudomonas aeruginosa has demonstrated their potential for both internal and external applications. This study aimed to illustrate the treatment with bacteriophages in bacterially complicated skin lesions that do not respond to antimicrobial therapy.

12.
Plants (Basel) ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771667

ABSTRACT

In this work, the effects of salt stress on Nepeta racemosa Lam. were studied to analyze the possibility of using it as a potential culture for salinity-affected soils. A total of nine concentrations of salts-NaCl (18, 39, and 60 mg/100 g soil), Na2SO4 (50, 85, and 120 mg/100 g soil), and a mixture (9 g NaCl + 25 g Na2SO4, 19 g NaCl + 43 g Na2SO4, and 30 g NaCl + 60 g Na2SO4/100 g soil)-simulated real salinity conditions. Environmental electron microscopy offered information about the size and distribution of glandular trichomes, which are very important structures that contain bioactive compounds. The chlorophyll pigments, polyphenols, flavonoids, and antioxidant activity were determined based on spectrophotometric protocols. The results have shown a different impact of salinity depending on the salt type, with an increase in bioactive compound concentrations in some cases. The highest polyphenol concentrations were obtained for Na2SO4 variants (47.05 and 46.48 mg GA/g dw for the highest salt concentration in the first and second year, respectively), while the highest flavonoid content was found for the salt mixtures (42.77 and 39.89 mg QE/g dw for the highest concentrations of salt in the first and, respectively, the second year), approximately 100% higher than control. From the Pearson analysis, strong correlations were found between chlorophyll pigments (up to 0.93), antioxidant activity and yield for the first harvest (up to 0.38), and antioxidant activity and flavonoid content for the second harvest (up to 0.95). The results indicate the possibility of growing the studied plants in salt-stress soils, obtaining higher concentrations of bioactive compounds.

13.
Gels ; 9(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37623110

ABSTRACT

In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress.

14.
Life (Basel) ; 13(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37374065

ABSTRACT

With the increasing demand for European catfish, traditional extensive growth methods in polyculture are no longer sufficient to meet market needs. Therefore, this study aimed to identify indicators for improving recirculating aquaculture system (RAS) technology by determining and comparing growth performance, flesh quality, blood profile, oxidative status, and intestinal microbiota parameters between fish cultivated in a RAS and an earthen pond. Results revealed that RAS-grown fish had a higher fat content compared to pond-grown fish, while no significant differences were found for growth parameters. Sensory analysis showed no significant difference in taste between the two groups. Blood composition analysis showed small differences. Oxidative status analyses showed higher catalase and glutathione peroxidase activities in RAS-grown fish and slightly higher superoxide dismutase activity in pond-grown fish. Microbial analysis showed differences in the intestinal microflora, with a higher total number of aerobic germs and anaerobic germs and a lower total number of sulfite-reducing clostridia in RAS-grown fish. This study provides valuable insights into the comparative performance of a RAS and a pond rearing system in European catfish production, potentially informing future growth technologies.

15.
Life (Basel) ; 13(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895464

ABSTRACT

On the 23rd of September 2022, a small intensive aquaculture unit populated with rainbow trout (Oncorhynchus mykiss) reported increased mortality in adults and juvenile fish. The unit comprised 12 enclosed concrete basins with a capacity of ten cubic meters of water, populated with 150 kg of fish each. Fish were subjected to a clinical examination on the site, after which whole fish were harvested for a bacteriological and histopathological examination. Water quality parameters were examined using classic biochemical methods and Fourier Transform Infrared Spectroscopy in order to find out whether the environment in which the fish live is also a predisposing factor that could facilitate different pathogens and induce a state of disease in the fish. Real-time PCR was performed on strains of Aeromonas spp. sampled from the fish to accurately identify the pathogen species. The goal was to accurately identify the problems and predisposing factors that lead to disease outbreaks.

16.
Plants (Basel) ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36840247

ABSTRACT

Essential oil of Nepeta racemosa Lam. was extracted and characterized to determine its antimicrobial activity and potential use in applications. The essential oil was loaded on polyvinyl alcohol-pullulan films and gels and characterized by optical microscopy, scanning electron microscopy, and UV-Vis spectroscopy before having its antimicrobial capacities assessed. The essential oil extracted from Nepeta racemosa Lam. was characterized using gas chromatography coupled with mass spectroscopy, which indicated that the most abundant component was nepetalic acid (55.5%), followed by eucalyptol (10.7%) and other compounds with concentrations of about 5% or less. The essential oil, as well as the loaded films and gels, exhibited good antibacterial activity on both gram-positive and gram-negative strains, with growth inhibition zones larger in some cases than for gentamicin, indicating excellent premises for using these essential-oil-loaded materials for applications in the food industry or biomedicine.

17.
Antioxidants (Basel) ; 12(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37107172

ABSTRACT

In recent years, phytofunctionalized AgNPs have attracted great interest due to their remarkable biological activities. In the present study, AgNPs were synthesized using Abies alba and Pinus sylvestris bark extracts. The chemical profile of these bark extracts was analyzed by LC-HRMS/MS. As a first step, the synthesis parameters (pH, AgNO3 concentration, ratio of bark extract and AgNO3, temperature, and reaction time) were optimized. The synthesized AgNPs were characterized by ATR-FTIR spectroscopy, DLS, SEM, EDX, and TEM. Their antioxidant, cytotoxic, and antibacterial properties were evaluated by the DPPH, ABTS, MTT, and broth microdilution assays, respectively. Abies alba and Pinus sylvestris bark extract-derived AgNPs were well-dispersed, spherical, small (average particle size of 9.92 and 24.49 nm, respectively), stable (zeta potential values of -10.9 and -10.8 mV, respectively), and cytotoxic to A-375 human malignant melanoma cells (IC50 = 2.40 ± 0.21 and 6.02 ± 0.61 µg/mL, respectively). The phytosynthesized AgNPs also showed antioxidant and antibacterial effects.

18.
Polymers (Basel) ; 15(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37299371

ABSTRACT

The sustainable development of innovative eco-friendly multifunctional nanocomposites, possessing superior characteristics, is a noteworthy topic. Novel semi-interpenetrated nanocomposite films based on poly(vinyl alcohol) covalently and thermally crosslinked with oxalic acid (OA), reinforced with a novel organophosphorus flame retardant (PFR-4) derived from co-polycondensation in solution reaction of equimolar amounts of co-monomers, namely, bis((6-oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl)-(4-hydroxyaniline)-methylene)-1,4-phenylene, bisphenol S, and phenylphosphonic dichloride, in a molar ratio of 1:1:2, and additionally doped with silver-loaded zeolite L nanoparticles (ze-Ag), have been prepared by casting from solution technique. The morphology of the as prepared PVA-oxalic acid films and their semi-interpenetrated nanocomposites with PFR-4 and ze-Ag was investigated by scanning electron microscopy (SEM), while the homogeneous distribution of the organophosphorus compound and nanoparticles within the nanocomposite films has been introspected by means of energy dispersive X-ray spectroscopy (EDX). It was established that composites with a very low phosphorus content had noticeably improved flame retardancy. The peak of the heat release rate was reduced up to 55%, depending on the content of the flame-retardant additive and the doping ze-Ag nanoparticles introduced into the PVA/OA matrix. The ultimate tensile strength and elastic modulus increased significantly in the reinforced nanocomposites. Considerably increased antimicrobial activity was revealed in the case of the samples containing silver-loaded zeolite L nanoparticles.

19.
Gels ; 10(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38247749

ABSTRACT

In this study, the potential use of Artemisia dracunculus essential oil in bio-applications was investigated. Firstly, the phytochemicals from Artemisia dracunculus were analyzed by different methods. Secondly, the Artemisia dracunculus essential oil was incorporated into the hydrogel matrix based on poly(vinyl alcohol) (PVA) and agar (A). The structural, morphological, and physical properties of the hydrogel matrix loaded with different amounts of Artemisia dracunculus essential oil were thoroughly investigated. FTIR analysis revealed the successful loading of the essential oil Artemisia dracunculus into the PVA/A hydrogel matrix. The influence of the mechanical properties and antimicrobial activity of the PVA/A hydrogel matrix loaded with different amounts of Artemisia dracunculus was also assessed. The antimicrobial activity of Artemisia dracunculus (EO Artemisia dracunculus) essential oil was tested using the disk diffusion method and the time-kill assay method after entrapment in the PVA/A hydrogel matrices. The results showed that PVA/agar-based hydrogels loaded with EO Artemisia dracunculus exhibited significant antimicrobial activity (log reduction ratio in the range of 85.5111-100%) against nine pathogenic isolates, both Gram-positive (S. aureus, MRSA, E. faecalis, L. monocytogenes) and Gram-negative (E. coli, K. pneumoniae, S. enteritidis, S. typhimurium, and A. salmonicida). The resulted biocompatible polymers proved to have enhanced properties when functionalized with the essential oil of Artemisia dracunculus, offering opportunities and possibilities for novel applications.

20.
Materials (Basel) ; 15(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407829

ABSTRACT

In this study, we aim to obtain biomaterials with antibacterial properties by combining poly(vinyl alcohol) with the extracts obtained from various selected plants from Romania. Natural herbal extracts of freshly picked flowers of the lavender plant (Lavandula angustifolia) and leaves of the peppermint plant (Mentha piperita), hemp plant (Cannabis sativa L.), verbena plant (Verbena officinalis) and sage plant (Salvia officinalis folium) were selected after an intensive analyzing of diverse medicinal plants often used as antibacterial and healing agents from the country flora. The plant extracts were characterized by different methods such as totals of phenols and flavonoids content and UV-is spectroscopy. The highest amounts of the total phenolic and flavonoid contents, respectively, were recorded for Salvia officinalis. Moreover, the obtained films of poly(vinyl alcohol) (PVA) loaded with plant extracts were studied concerning the surface properties and their antibacterial or cytotoxicity activity. The Attenuated Total Reflection Fourier Transform Infrared analysis described the successfully incorporation of each plant extract in the poly(vinyl alcohol) matrix, while the profilometry demonstrated the enhanced surface properties. The results showed that the plant extracts conferred significant antibacterial effects to films toward Staphylococcus aureus and Escherichia coli and are not toxic against fibroblastic cells from the rabbit.

SELECTION OF CITATIONS
SEARCH DETAIL