ABSTRACT
OBJECTIVE: De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS: Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS: We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION: Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.
ABSTRACT
BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.
Subject(s)
Intellectual Disability , Leukoencephalopathies , Humans , Child , Corpus Callosum , Facies , Mutation/genetics , Phenotype , Genotype , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Syndrome , Developmental Disabilities/pathology , DNA-Binding Proteins/genetics , Transcription Factors/geneticsABSTRACT
Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
Subject(s)
Abnormalities, Multiple/pathology , Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/pathology , DNA Methylation , Epigenesis, Genetic , Growth Disorders/pathology , Heart Septal Defects, Ventricular/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Abnormalities, Multiple/genetics , Case-Control Studies , Cohort Studies , Craniofacial Abnormalities/genetics , Female , Genetic Predisposition to Disease , Growth Disorders/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Infant, Newborn , Male , Neurodevelopmental Disorders/geneticsABSTRACT
BACKGROUND: Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. RESULTS: We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. CONCLUSION: We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques.
Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Humans , Exome/genetics , Exome Sequencing , High-Throughput Nucleotide Sequencing/methods , Genome, Human/genetics , Base Sequence , DNA Copy Number Variations/geneticsABSTRACT
Noonan syndrome (NS) is an autosomal dominant condition characterized by facial dysmorphism, congenital heart disease, development delay, growth retardation and lymphatic disease. It is caused by germline pathogenic variants in genes encoding proteins in the Ras/mitogen-activated protein kinase signaling pathway. Nerve enlargement is not generally considered as a feature of NS, although some cases have been reported. High-resolution nerve ultrasound enables detailed anatomical assessment of peripheral nerves and can show enlarged nerves. This retrospective cohort study aims to describe the sonographic findings of patients with NS performed during a 1-year time period. Data on the degree of enlargement, the relation to increasing age, pain in extremities, genotype on the gene level and clinical features were collected. Twenty-nine of 93 patients visiting the NS Center of Expertise of the Radboud University Medical Center Nijmegen underwent high-resolution ultrasound. In 24 patients (83%) nerve enlargement was found. Most of them experienced pain. We observed a weak correlation with increasing age and the degree of nerve enlargement but no association with pain, genotype at the gene level or clinical features. This study shows that patients with NS have a high predisposition for sonographic nerve enlargement and that the majority experience pain.
Subject(s)
Noonan Syndrome , Humans , Noonan Syndrome/genetics , Noonan Syndrome/pathology , Male , Female , Child , Adolescent , Child, Preschool , Adult , Retrospective Studies , Ultrasonography , Infant , Young Adult , Peripheral Nerves/pathology , Peripheral Nerves/diagnostic imaging , GenotypeABSTRACT
This study is aimed at describing the findings of high-resolution nerve ultrasound in children with Noonan syndrome (NS) and related disorders experiencing pain in their legs. This retrospective cohort study was conducted in the NS expert center of the Radboud University Medical Center in the Netherlands. Patients were eligible if they were younger than 18 years, clinically and genetically diagnosed with NS or a NS related disorder, and experienced pain in their legs. Anamneses and physical examination were performed in all children. In addition, high-resolution nerve ultrasound was used to assess nerve hypertrophy and, if needed, complemented spinal magnetic resonance imaging was performed. Over a period of 6 months, four children, three with NS and one child with NS with multiple lentigines, who experienced pain of their legs were eligible for inclusion. Muscle weakness was found in two of them. High-resolution nerve ultrasound showed (localized) hypertrophic neuropathy in all patients. One child underwent additional spinal magnetic resonance imaging, which showed profound thickening of the nerve roots and plexus. Conclusion: In the four children included with a NS and related disorders, pain was concomitant with nerve hypertrophy, which suggests an association between these two findings. The use of high-resolution nerve ultrasound and spinal magnetic resonance imaging might result in better understanding of the nature of this pain and the possible association to nerve hypertrophy in patients with NS and related disorders. What is Known: ⢠Children with Noonan syndrome and related disorders may report pain in their legs, which is often interpreted as growing pain. ⢠Some adults with Noonan syndrome and related disorders have hypertrophic neuropathy as a possible cause of neuropathic pain. What is New: ⢠This is the first study using high-resolution nerve ultrasound in children with Noonan syndrome and related disorders experiencing pain in their legs. ⢠Hypertrophic neuropathy was diagnosed as possible cause of pain in four children with Noonan syndrome and related disorders.
Subject(s)
Noonan Syndrome , Adult , Humans , Child , Noonan Syndrome/complications , Noonan Syndrome/diagnosis , Retrospective Studies , Hypertrophy/complications , Pain/etiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11ABSTRACT
OBJECTIVE: We performed a 1-year evaluation of a novel strategy of simultaneously analyzing single nucleotide variants (SNVs), copy number variants (CNVs) and copy-number-neutral Absence-of-Heterozygosity from Whole Exome Sequencing (WES) data for prenatal diagnosis of fetuses with ultrasound (US) anomalies and a non-causative QF-PCR result. METHODS: After invasive diagnostics, whole exome parent-offspring trio-sequencing with exome-wide CNV analysis was performed in pregnancies with fetal US anomalies and a non-causative QF-PCR result (WES-CNV). On request, additional SNV-analysis, restricted to (the) requested gene panel(s) only (with the option of whole exome SNV-analysis afterward) was performed simultaneously (WES-CNV/SNV) or as rapid SNV-re-analysis, following a normal CNV analysis. RESULTS: In total, 415 prenatal samples were included. Following a non-causative QF-PCR result, WES-CNV analysis was initially requested for 74.3% of the chorionic villus (CV) samples and 45% of the amniotic fluid (AF) samples. In case WES-CNV analysis did not reveal a causative aberration, SNV-re-analysis was requested in 41.7% of the CV samples and 17.5% of the AF samples. All initial analyses could be finished within 2 weeks after sampling. For SNV-re-analysis during pregnancy, turn-around-times (TATs) varied between one and 8 days. CONCLUSION: We show a highly efficient all-in-one WES-based strategy, with short TATs, and the option of rapid SNV-re-analysis after a normal CNV result.
Subject(s)
DNA Copy Number Variations , Fetus , Pregnancy , Female , Humans , Exome Sequencing , Heterozygote , Fetus/diagnostic imaging , Fetus/abnormalities , NucleotidesABSTRACT
Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise in many rare monogenic disorders. Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-media platforms that facilitate data sharing among sequencing labs can help to address this challenge. Through one such tool, GeneMatcher, we identified nine DD- and/or ID-affected probands with a rare, heterozygous variant in the gene encoding the serine/threonine-protein kinase BRSK2. All probands have a speech delay, and most present with intellectual disability, motor delay, behavioral issues, and autism. Six of the nine variants are predicted to result in loss of function, and computational modeling predicts that the remaining three missense variants are damaging to BRSK2 structure and function. All nine variants are absent from large variant databases, and BRSK2 is, in general, relatively intolerant to protein-altering variation among humans. In all six probands for whom parents were available, the mutations were found to have arisen de novo. Five of these de novo variants were from cohorts with at least 400 sequenced probands; collectively, the cohorts span 3,429 probands, and the observed rate of de novo variation in these cohorts is significantly higher than the estimated background-mutation rate (p = 2.46 × 10-6). We also find that exome sequencing provides lower coverage and appears less sensitive to rare variation in BRSK2 than does genome sequencing; this fact most likely reduces BRSK2's visibility in many clinical and research sequencing efforts. Altogether, our results implicate damaging variation in BRSK2 as a source of neurodevelopmental disease.
Subject(s)
Developmental Disabilities/genetics , Gene Deletion , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Protein Serine-Threonine Kinases/genetics , Adolescent , Autistic Disorder/genetics , Child , Child Behavior Disorders/genetics , Child, Preschool , Exome , Female , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Male , Motor Skills Disorders/genetics , Mutation , Phenotype , Exome Sequencing , Young AdultABSTRACT
Noonan syndrome (NS) has been associated with an increased risk of lymphatic anomalies, with an estimated prevalence of 20%. The prevalence of lymphatic anomalies seems to differ between pathogenic variants. Therefore, this study aims to describe the clinical presentation, prevalence and genotype-phenotype correlations of lymphatic anomalies during life in patients with NS. This retrospective cohort study included patients (n = 115) who were clinically and genetically diagnosed with NS and visited the Noonan expertise Center of the Radboud University Medical Center between January 2015 and March 2021. Data on lymphatic anomalies during lifetime were obtained from medical records. Lymphatic anomalies most often presented as an increased nuchal translucency, chylothorax and/or lymphedema. Prenatal lymphatic anomalies increased the risk of lymphatic anomalies during infancy (OR 4.9, 95% CI 1.7-14.6). The lifetime prevalence of lymphatic anomalies was 37%. Genotype-phenotype correlations showed an especially high prevalence of lymphatic anomalies during infancy and childhood in patients with a pathogenic SOS2 variant (p = 0.03 and p < 0.01, respectively). This study shows that patients with NS have a high predisposition for developing lymphatic anomalies during life. Especially patients with prenatal lymphatic anomalies have an increased risk of lymphatic anomalies during infancy. Genotype-phenotype correlations were found in pathogenic variants in SOS2.
Subject(s)
Noonan Syndrome , Female , Genetic Association Studies , Genotype , Humans , Noonan Syndrome/complications , Noonan Syndrome/epidemiology , Noonan Syndrome/genetics , Pregnancy , Retrospective StudiesABSTRACT
We present key points from the updated Dutch-Flemish guideline on comprehensive diagnostics in disorders/differences of sex development (DSD) that have not been widely addressed in the current (inter)national literature. These points are of interest to physicians working in DSD (expert) centres and to professionals who come across persons with a DSD but have no (or limited) experience in this area. The Dutch-Flemish guideline is based on internationally accepted principles. Recent initiatives striving for uniform high-quality care across Europe, and beyond, such as the completed COST action 1303 and the European Reference Network for rare endocrine conditions (EndoERN), have generated several excellent papers covering nearly all aspects of DSD. The Dutch-Flemish guideline follows these international consensus papers and covers a number of other topics relevant to daily practice. For instance, although next-generation sequencing (NGS)-based molecular diagnostics are becoming the gold standard for genetic evaluation, it can be difficult to prove variant causality or relate the genotype to the clinical presentation. Network formation and centralisation are essential to promote functional studies that assess the effects of genetic variants and to the correct histological assessment of gonadal material from DSD patients, as well as allowing for maximisation of expertise and possible cost reductions. The Dutch-Flemish guidelines uniquely address three aspects of DSD. First, we propose an algorithm for counselling and diagnostic evaluation when a DSD is suspected prenatally, a clinical situation that is becoming more common. Referral to ultrasound sonographers and obstetricians who are part of a DSD team is increasingly important here. Second, we pay special attention to healthcare professionals not working within a DSD centre as they are often the first to diagnose or suspect a DSD, but are not regularly exposed to DSDs and may have limited experience. Their thoughtful communication to patients, carers and colleagues, and the accessibility of protocols for first-line management and efficient referral are essential. Careful communication in the prenatal to neonatal period and the adolescent to adult transition are equally important and relatively under-reported in the literature. Third, we discuss the timing of (NGS-based) molecular diagnostics in the initial workup of new patients and in people with a diagnosis made solely on clinical grounds or those who had earlier genetic testing that is not compatible with current state-of-the-art diagnostics.
Subject(s)
Disorders of Sex Development/diagnosis , Pathology, Molecular , Rare Diseases/diagnosis , Sexual Development/genetics , Disorders of Sex Development/epidemiology , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology , Europe , Female , Genetic Testing/trends , Guidelines as Topic , High-Throughput Nucleotide Sequencing , Humans , Pregnancy , Rare Diseases/epidemiology , Rare Diseases/genetics , Rare Diseases/pathologyABSTRACT
A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.
Subject(s)
Cost-Benefit Analysis , Exons/genetics , Extracellular Matrix Proteins/genetics , Molecular Probes/metabolism , RNA Splice Sites/genetics , Retinitis Pigmentosa/genetics , Sequence Analysis, DNA , Usher Syndromes/genetics , Base Sequence , DNA Copy Number Variations/genetics , Gene Deletion , Humans , Polymorphism, Single Nucleotide/genetics , Retinitis Pigmentosa/economics , Usher Syndromes/economicsABSTRACT
Pathogenic variants in ZMYND11, which acts as a transcriptional repressor, have been associated with intellectual disability, behavioral abnormalities, and seizures. Only 11 affected individuals have been reported to date, and the phenotype associated with pathogenic variants in this gene have not been fully defined. Here, we present 16 additional patients with predicted pathogenic heterozygous variants in including four individuals from the same family, to further delineate and expand the genotypic and phenotypic spectrum of ZMYND11-related syndromic intellectual disability. The associated phenotype includes developmental delay, particularly affecting speech, mild-moderate intellectual disability, significant behavioral abnormalities, seizures, and hypotonia. There are subtle shared dysmorphic features, including prominent eyelashes and eyebrows, a depressed nasal bridge with bulbous nasal tip, anteverted nares, thin vermilion of the upper lip, and wide mouth. Novel features include brachydactyly and tooth enamel hypoplasia. Most identified variants are likely to result in premature truncation and/or nonsense-mediated decay. Two ZMYND11 variants located in the final exon-p.(Gln586*) (likely escaping nonsense-mediated decay) and p.(Cys574Arg)-are predicted to disrupt the MYND-type zinc-finger motif and likely interfere with binding to its interaction partners. Hence, the homogeneous phenotype likely results from a common mechanism of loss-of-function.
Subject(s)
Cell Cycle Proteins/genetics , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , Child , Child, Preschool , Facies , Female , Genetic Association Studies/methods , Genotype , Haploinsufficiency , Humans , Male , Mutation , Nonsense Mediated mRNA Decay , Phenotype , Syndrome , Zinc FingersABSTRACT
OBJECTIVE: The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging. METHODS: In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7). RESULTS: A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases. CONCLUSIONS: These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making.
Subject(s)
Congenital Abnormalities/diagnosis , Congenital Abnormalities/genetics , Exome Sequencing , Ultrasonography, Prenatal , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adult , Decision Making , Female , Fetus/diagnostic imaging , Genetic Testing/methods , Humans , Male , Pregnancy , Prenatal Diagnosis/methods , Reproducibility of Results , Young AdultABSTRACT
BACKGROUND: This study evaluates 6 years of prenatal rasopathy testing in the Netherlands, updates on previous data and gives recommendations for prenatal rasopathy testing. METHODS: 424 fetal samples, sent in for prenatal rasopathy testing in 2011-2016, were collected. Cohort 1 included 231 samples that were sequenced for 1-5 rasopathy genes. Cohort 2 included 193 samples that were analysed with a 14-gene next generation sequencing (NGS) panel. For all mutation-positive samples in both cohorts, the referring physician provided detailed ultrasound findings and postnatal follow-up. For 168 mutation-negative samples in cohort 2, solely clinical information on the requisition form was collected. RESULTS: In total, 40 (likely) pathogenic variants were detected (9.4%). All fetuses showed a variable degree of involvement of prenatal findings: increased nuchal translucency (NT)/cystic hygroma, distended jugular lymph sacs (JLS), hydrops fetalis, polyhydramnios, pleural effusion, ascites, cardiac defects and renal anomalies. An increased NT was the most common finding. Eight fetuses showed solely an increased NT/cystic hygroma, which were all larger than 5.5 mm. Ascites and renal anomalies appeared to be poor predictors of pathogenic outcome. CONCLUSION: Fetuses with a rasopathy show in general multiple ultrasound findings. The larger the NT and the longer it persists, the more likely it is to find a pathogenic variant. Rasopathy testing is recommended when the fetus shows an isolated increased NT ≥5.0 mm or when NT of ≥3.5 mm and at least one of the following ultrasound anomalies is present: distended JLS, hydrops fetalis, polyhydramnios, pleural effusion, ascites, cardiac defects and renal anomalies.
Subject(s)
Lymphangioma, Cystic/genetics , Noonan Syndrome/genetics , Cohort Studies , Female , Fetus , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Mutation , Netherlands , Noonan Syndrome/diagnosis , Pregnancy , Prenatal Diagnosis , Sequence Analysis, DNAABSTRACT
The role of disturbed chromatin remodeling in the pathogenesis of intellectual disability (ID) is well established and illustrated by de novo mutations found in a plethora of genes encoding for proteins of the epigenetic regulatory machinery. We describe mutations in the "SET nuclear proto-oncogene" (SET), encoding a component of the "inhibitor of histone acetyltransferases" (INHAT) complex, involved in transcriptional silencing. Using whole exome sequencing, four patients were identified with de novo mutations in the SET gene. Additionally, an affected mother and child were detected who carried a frameshift variant in SET. Four patients were found in literature. The de novo mutations in patients affected all four known SET mRNA transcripts. LoF mutations in SET are exceedingly rare in the normal population and, if present, affect only one transcript. The pivotal role of SET in neurogenesis is evident from in vitro and animal models. SET interacts with numerous proteins involved in histone modification, including proteins encoded by known autosomal dominant ID genes, that is, EP300, CREBBP, SETBP1, KMT2A, RAC1, and CTCF. Our study identifies SET as a new component of epigenetic regulatory modules underlying human cognitive disorders, and as a first member of the Nucleosome Assembly Protein (NAP) family implicated in ID.
Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Histone Chaperones/genetics , Intellectual Disability/genetics , Transcription Factors/genetics , Adolescent , Animals , Child , Child, Preschool , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins , Exome/genetics , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/genetics , Humans , Intellectual Disability/physiopathology , Male , Mutation , Nucleosome Assembly Protein 1/genetics , Proto-Oncogene MasABSTRACT
In 2016, we described that missense variants in parts of exons 30 and 31 of CREBBP can cause a phenotype that differs from Rubinstein-Taybi syndrome (RSTS). Here we report on another 11 patients with variants in this region of CREBBP (between bp 5,128 and 5,614) and two with variants in the homologous region of EP300. None of the patients show characteristics typical for RSTS. The variants were detected by exome sequencing using a panel for intellectual disability in all but one individual, in whom Sanger sequencing was performed upon clinical recognition of the entity. The main characteristics of the patients are developmental delay (90%), autistic behavior (65%), short stature (42%), and microcephaly (43%). Medical problems include feeding problems (75%), vision (50%), and hearing (54%) impairments, recurrent upper airway infections (42%), and epilepsy (21%). Major malformations are less common except for cryptorchidism (46% of males), and cerebral anomalies (70%). Individuals with variants between bp 5,595 and 5,614 of CREBBP show a specific phenotype (ptosis, telecanthi, short and upslanted palpebral fissures, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum). 3D face shape demonstrated resemblance to individuals with a duplication of 16p13.3 (the region that includes CREBBP), possibly indicating a gain of function. The other affected individuals show a less specific phenotype. We conclude that there is now more firm evidence that variants in these specific regions of CREBBP and EP300 result in a phenotype that differs from RSTS, and that this phenotype may be heterogeneous.
Subject(s)
CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Mutation , Rubinstein-Taybi Syndrome/genetics , Adolescent , Alleles , Child , Child, Preschool , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Imaging, Three-Dimensional , Infant , Male , Models, Anatomic , Phenotype , Rubinstein-Taybi Syndrome/diagnosisABSTRACT
PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder). CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016.
Subject(s)
DNA Copy Number Variations , Exome , Genetic Diseases, Inborn/genetics , Whole Genome Sequencing , Cohort Studies , Genome, Human , Humans , Inheritance Patterns , Male , Polymorphism, Single NucleotideABSTRACT
Noonan syndrome (NS) is an autosomal dominant multisystem condition with a variable phenotype. The most characteristic features are short stature, congenital heart defects, and recognizable facial features. Mutations in SOS1 are found in 10-20% of patients with NS. Different genotype-phenotype studies mention correlations between SOS1 mutations and some features, such as ectodermal abnormalities and specific facial features. We present a large NS family with a novel pathogenic mutation; SOS1 c.3134C>G, p.Pro1045Arg. Ten family members with NS are included with genetically confirmed mutation and clinical evaluation. The phenotype shows a broad spectrum from only few suggestive features for NS in the older generation to typical features in the youngest generation. We report on a novel pathogenic mutation in the SOS1 gene and a large clinical spectrum in a NS family with ten genetically confirmed affected individuals.
Subject(s)
Heart Defects, Congenital/genetics , Noonan Syndrome/genetics , SOS1 Protein/genetics , Adolescent , Adult , Aged , Child , Female , Genetic Association Studies , Heart Defects, Congenital/complications , Heart Defects, Congenital/physiopathology , Heterozygote , Humans , Male , Middle Aged , Mutation , Noonan Syndrome/complications , Noonan Syndrome/physiopathology , Pedigree , Phenotype , Young AdultABSTRACT
The cardinal features of Ectrodactyly, Ectodermal dysplasia, Cleft lip/palate (EEC), and Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndromes are ectodermal dysplasia (ED), orofacial clefting, and limb anomalies. EEC and AEC are caused by heterozygous mutations in the transcription factor p63 encoded by TP63. Here, we report a patient with an EEC/AEC syndrome-like phenotype, including ankyloblepharon, ED, cleft palate, ectrodactyly, syndactyly, additional hypogammaglobulinemia, and growth delay. Neither pathogenic mutations in TP63 nor CNVs at the TP63 locus were identified. Exome sequencing revealed de novo heterozygous variants in CHUK (conserved helix-loop-helix ubiquitous kinase), PTGER4, and IFIT2. While the variant in PTGER4 might contribute to the immunodeficiency and growth delay, the variant in CHUK appeared to be most relevant for the EEC/AEC-like phenotype. CHUK is a direct target gene of p63 and encodes a component of the IKK complex that plays a key role in NF-κB pathway activation. The identified CHUK variant (g.101980394T>C; c.425A>G; p.His142Arg) is located in the kinase domain which is responsible for the phosphorylation activity of the protein. The variant may affect CHUK function and thus contribute to the disease phenotype in three ways: (1) the variant exhibits a dominant negative effect and results in an inactive IKK complex that affects the canonical NF-κB pathway; (2) it affects the feedback loop of the canonical and non-canonical NF-κB pathways that are CHUK kinase activity-dependent; and (3) it disrupts NF-κB independent epidermal development that is often p63-dependent. Therefore, we propose that the heterozygous CHUK variant is highly likely to be causative to the EEC/AEC-like and additional hypogammaglobulinemia phenotypes in the patient presented here.
ABSTRACT
Mutations in RIT1, involved in the RAS-MAPK pathway, have recently been identified as a cause for Noonan syndrome. We present two patients with Noonan syndrome caused by a RIT1 mutation with novel phenotypic manifestations, severe bilateral lower limb lymphedema starting during puberty, and fetal hydrops resulting in intrauterine fetal death, respectively. Including our patients, a total of 52 patients have been reported with Noonan syndrome caused by a RIT1 mutation. Our report contributes to the delineation of the phenotype associated with RIT1 mutations and underlines that lymphatic involvement is part of this spectrum. In addition, we provide an overview of the currently described Noonan syndrome patients with RIT1 mutations in literature. © 2016 Wiley Periodicals, Inc.