Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Nano Lett ; 24(9): 2839-2845, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38395430

ABSTRACT

Semiconductor quantum dots are promising candidates for the generation of nonclassical light. Coupling a quantum dot to a device capable of providing polarization-selective enhancement of optical transitions is highly beneficial for advanced functionalities, such as efficient resonant driving schemes or applications based on optical cyclicity. Here, we demonstrate broadband polarization-selective enhancement by coupling a quantum dot emitting in the telecom O-band to an elliptical bullseye resonator. We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9 ± 0.6, and count rates up to 3 MHz. Furthermore, we present a measurement of two-photon interference without any external polarization filtering. Finally, we demonstrate compatibility with compact Stirling cryocoolers by operating the device at temperatures up to 40 K. These results represent an important step toward practical integration of optimal quantum dot photon sources in deployment-ready setups.

2.
Nano Lett ; 23(5): 1705-1710, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36790264

ABSTRACT

Imposing an external periodic electrostatic potential to the electrons confined in a quantum well makes it possible to engineer synthetic two-dimensional band structures, with electronic properties different from those in the host semiconductor. Here we report the fabrication and study of a tunable triangular artificial lattice on a GaAs/AlGaAs heterostructure where it is possible to transform from the original GaAs band structure and a circular Fermi surface to a new band structure with multiple artificial Fermi surfaces simply by altering a gate bias. For weak electrostatic modulation magnetotransport measurements reveal multiple quantum oscillations and commensurability oscillations due to the electron scattering from the artificial lattice. Increasing the strength of the modulation reveals new commensurability oscillations of the electrons from the artificial Fermi surface scattering from the triangular artificial lattice. These results show that low disorder gate-tunable lateral superlattices can be used to form artificial two-dimensional crystals with designer electronic properties.

3.
Opt Express ; 29(21): 33602-33614, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809170

ABSTRACT

Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavity laser consisting of two evanescently coupled whispering gallery microdisk resonators. Exploiting a dual injection scheme for the laser cavity, single mode CW vertical emission at 3.3 THz is obtained at 10 K with 6.4 mA threshold current and 145 mW/A slope efficiency up to 320 µW emitted power measured in quasi-CW mode. The tuning of the laser emission directionality is also obtained by independently varying the pumping strength between the microdisks. By connecting the resonators through a suspended gold bridge, the laser out-coupling efficiency in the vertical direction is strongly enhanced. Owing to the high brightness, low-power consumption and CW operation, the proposed microcavity laser design could allow the realization of high-performance CW THz QCLs ready for massive parallelization.

4.
Phys Rev Lett ; 126(20): 207701, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34110191

ABSTRACT

We report on ballistic Hall photovoltammetry as a contactless probe of localized spin excitations. Spins resonating in the near field of a two-dimensional electron system are shown to induce a long range electromotive force that we calculate. We use this coupling mechanism to detect the spin wave eigenmodes of a single ferromagnet of sub-100 nm size. The high sensitivity of this detection technique, 380 spins/sqrt[Hz], and its noninvasiveness present advantages for probing magnetization dynamics and spin transport.

5.
Opt Express ; 28(24): 36838-36848, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379768

ABSTRACT

Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components integrated in a quantum network must be synchronised and therefore comply with a certain clock frequency. In quantum key distribution, the most mature technology, clock rates have reached and exceeded 1GHz. Here we show the first electrically pulsed sub-Poissonian entangled photon source compatible with existing fiber networks operating at this clock rate. The entangled LED is based on InAs/InP quantum dots emitting in the main telecom window, with a multi-photon probability of less than 10% per emission cycle and a maximum entanglement fidelity of 89%. We use this device to demonstrate GHz clocked distribution of entangled qubits over an installed fiber network between two points 4.6km apart.

6.
Opt Express ; 27(8): 10692-10704, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052924

ABSTRACT

Using a sub-millimeter exciton-polariton waveguide suitable for integrated photonics, we experimentally demonstrate nonlinear modulation of pico-Joule pulses at the same time as amplification sufficient to compensate the system losses. By comparison with a numerical model we explain the observed interplay of gain and nonlinearity as amplification of the interacting polariton field by stimulated scattering from an incoherent continuous-wave reservoir that is depleted by the pulses. This combination of gain and giant ultrafast nonlinearity operating on picosecond pulses has the potential to open up new directions in low-power all-optical information processing and nonlinear photonic simulation of conservative and driven-dissipative systems.

7.
Opt Express ; 25(21): 25566-25573, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041222

ABSTRACT

Terahertz (THz) coherent detectors are crucial for the stabilization and measurement of the properties of quantum cascade lasers (QCLs). This paper describes the exploitation of intra-cavity sum frequency generation to up-convert the emission of a THz QCL to the near infrared for detection with fiber optic coupled components alone. Specifically, a low cost infrared photodiode is used to detect a radio frequency (RF) signal with a signal-to-noise ratio of approximately 20dB, generated by beating the up-converted THz wave and a near infrared local oscillator. This RF beat note allows direct analysis of the THz QCL emission in time and frequency domains. The application of this technique for QCL characterization is demonstrated by analyzing the continuous tuning of the RF signal over 2 GHz, which arises from mode tuning across the QCL's operational current range.

8.
Nano Lett ; 16(12): 7685-7689, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960447

ABSTRACT

Electrically defined semiconductor quantum dots are attractive systems for spin manipulation and quantum information processing. Heavy-holes in both Si and GaAs are promising candidates for all-electrical spin manipulation, owing to the weak hyperfine interaction and strong spin-orbit interaction. However, it has only recently become possible to make stable quantum dots in these systems, mainly due to difficulties in device fabrication and stability. Here, we present electrical transport measurements on holes in a gate-defined double quantum dot in a GaAs/AlxGa1-xAs heterostructure. We observe clear Pauli spin blockade and demonstrate that the lifting of this spin blockade by an external magnetic field is highly anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit coupling show quantitative agreement with experimental results and suggest that the observed anisotropy can be explained by both the anisotropic effective hole g-factor and the surface Dresselhaus spin-orbit interaction.

9.
Phys Rev Lett ; 116(16): 163604, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152804

ABSTRACT

We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.

10.
Sensors (Basel) ; 16(4): 439, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27023552

ABSTRACT

We report on a quartz-enhanced photoacoustic (QEPAS) sensor for methanol (CH3OH) detection employing a novel quartz tuning fork (QTF), specifically designed to enhance the QEPAS sensing performance in the terahertz (THz) spectral range. A discussion of the QTF properties in terms of resonance frequency, quality factor and acousto-electric transduction efficiency as a function of prong sizes and spacing between the QTF prongs is presented. The QTF was employed in a QEPAS sensor system using a 3.93 THz quantum cascade laser as the excitation source in resonance with a CH3OH rotational absorption line located at 131.054 cm(-1). A minimum detection limit of 160 ppb in 30 s integration time, corresponding to a normalized noise equivalent absorption NNEA = 3.75 × 10(-11) cm(-1)W/Hz(½), was achieved, representing a nearly one-order-of-magnitude improvement with respect to previous reports.

11.
Opt Express ; 23(5): 6915-23, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25836911

ABSTRACT

We have demonstrated that a hybrid laser array, combining graded-photonic-heterostructure terahertz semiconductor lasers with a ring resonator, allows the relative phase (either symmetric or anti-symmetric) between the sources to be fixed by design. We have successfully phase-locked up to five separate lasers. Compared with a single device, we achieved a clear narrowing of the output beam profile.

12.
Opt Express ; 23(9): 11632-40, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969255

ABSTRACT

We investigated the room-temperature Terahertz (THz) response as saturable absorber of turbostratic multilayer graphene grown on the carbon-face of silicon carbide. By employing an open-aperture z-scan method and a 2.9 THz quantum cascade laser as source, a 10% enhancement of transparency is observed. The saturation intensity is several W/cm2, mostly attributed to the Pauli blocking effect in the intrinsic graphene layers. A visible increase of the modulation depth as a function of the number of graphene sheets was recorded as consequence of the low nonsaturable losses. The latter in turn revealed that crystalline disorder is the main limitation to larger modulations, demonstrating that the THz nonlinear absorption properties of turbostratic graphene can be engineered via a proper control of the crystalline disorder and the layers number.

13.
Opt Express ; 23(4): 5190-200, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836552

ABSTRACT

We report the development of on-chip optical components designed to improve the out-coupling of double-metal terahertz (THz) frequency quantum cascade lasers (QCLs). A visible reshaping of the optical beam is achieved, independent of the precise waveguide configuration, by direct incorporation of cyclic-olefin copolymer (COC) dielectric optical fibers onto the QCL facet. A major improvement is further achieved by incorporating a micromachined feed-horn waveguide, assembled around the THz QCL and integrated with a slit-coupler. In its first implementation, we obtain a ± 20° beam divergence, offering the potential for high-efficiency radiation coupling from a metal-metal waveguide into optical fibers.

14.
Opt Express ; 23(4): 4453-8, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836482

ABSTRACT

We demonstrate for the first time the integration of a superconducting hot electron bolometer (HEB) mixer and a quantum cascade laser (QCL) on the same 4-K stage of a single cryostat, which is of particular interest for terahertz (THz) HEB/QCL integrated heterodyne receivers for practical applications. Two key issues are addressed. Firstly, a low power consumption QCL is adopted for preventing its heat dissipation from destroying the HEB's superconductivity. Secondly, a simple spherical lens located on the same 4-K stage is introduced to optimize the coupling between the HEB and the QCL, which has relatively limited output power owing to low input direct current (DC) power. Note that simulation techniques are used to design the HEB/QCL integrated heterodyne receiver to avoid the need for mechanical tuning. The integrated HEB/QCL receiver shows an uncorrected noise temperature of 1500 K at 2.7 THz, which is better than the performance of the same receiver with all the components not integrated.

15.
Analyst ; 139(9): 2079-87, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24167816

ABSTRACT

An innovative quartz enhanced photoacoustic (QEPAS) gas sensing system operating in the THz spectral range and employing a custom quartz tuning fork (QTF) is described. The QTF dimensions are 3.3 cm × 0.4 cm × 0.8 cm, with the two prongs spaced by ∼800 µm. To test our sensor we used a quantum cascade laser as the light source and selected a methanol rotational absorption line at 131.054 cm(-1) (∼3.93 THz), with line-strength S = 4.28 × 10(-21) cm mol(-1). The sensor was operated at 10 Torr pressure on the first flexion QTF resonance frequency of 4245 Hz. The corresponding Q-factor was 74 760. Stepwise concentration measurements were performed to verify the linearity of the QEPAS signal as a function of the methanol concentration. The achieved sensitivity of the system is 7 parts per million in 4 seconds, corresponding to a QEPAS normalized noise-equivalent absorption of 2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best result of mid-IR QEPAS systems.

16.
Opt Express ; 21(13): 16162-9, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842401

ABSTRACT

We measure the electric field of a train of modelocked pulses from a quantum cascade laser in the time-domain by electro-optic sampling. The method relies on synchronizing the modelocked pulses to a reference laser and is applied to 15-ps pulses generated by a 2-THz quantum cascade laser. The pulses from the actively modelocked laser are completely characterized in field and in time with a sub-ps resolution, allowing us to determine the amplitude and phase of each cavity mode. The technique can also give access to the carrier-envelope phase of each pulse.

17.
Opt Express ; 21(2): 1599-605, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23389144

ABSTRACT

We report a passively mode-locked vertical external cavity surface emitting laser (VECSEL) producing 400 fs pulses with 4.35 kW peak power. The average output power was 3.3 W and the VECSEL had a repetition rate of 1.67 GHz at a center wavelength of 1013 nm. A near-antiresonant, substrate-removed, 10 quantum well (QW) gain structure designed to enable femtosecond pulse operation is used. A SESAM which uses fast carrier recombination at the semiconductor surface and the optical Stark effect enables passive mode-locking. When 1 W of the VECSEL output is launched into a 2 m long photonic crystal fiber (PCF) with a 2.2 µm core, a supercontinuum spanning 175 nm, with average power 0.5 W is produced.


Subject(s)
Lasers , Energy Transfer , Equipment Design , Equipment Failure Analysis
18.
Sensors (Basel) ; 13(3): 3331-40, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23478601

ABSTRACT

We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range.


Subject(s)
Gases/isolation & purification , Terahertz Spectroscopy , Equipment Design , Humans , Infrared Rays , Lasers, Semiconductor
19.
ACS Photonics ; 10(6): 1756-1768, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37363631

ABSTRACT

Delivery and focusing of radiation requires a variety of optical elements such as waveguides and mirrors or lenses. Heretofore, they were used separately, the former for radiation delivery, the latter for focusing. Here, we show that cylindrical multimode waveguides can both deliver and simultaneously focus radiation, without any external lenses or parabolic mirrors. We develop an analytical, ray-optical model to describe radiation propagation within and after the end of cylindrical multimode waveguides and demonstrate the focusing effect theoretically and experimentally at terahertz frequencies. In the focused spot, located at a distance of several millimeters to a few centimeters away from the waveguide end, typical for focal lengths in optical setups, we achieve a more than 8.4× higher intensity than the cross-sectional average intensity and compress the half-maximum spot area of the incident beam by a factor of >15. Our results represent the first practical realization of a focusing system consisting of only a single cylindrical multimode waveguide, that delivers radiation from one focused spot into another focused spot in free space, with focal distances that are much larger than both the radiation wavelength and the waveguide radius. The results enable design and optimization of cylindrical waveguide-containing systems and demonstrate a precise optical characterization method for cylindrical structures and objects.

20.
ACS Nano ; 17(6): 6103-6112, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36883532

ABSTRACT

The on-chip integration of two-dimensional nanomaterials, having exceptional optical, electrical, and thermal properties, with terahertz (THz) quantum cascade lasers (QCLs) has recently led to wide spectral tuning, nonlinear high-harmonic generation, and pulse generation. Here, we transfer a large area (1 × 1 cm2) multilayer graphene (MLG), to lithographically define a microthermometer, on the bottom contact of a single-plasmon THz QCL to monitor, in real-time, its local lattice temperature during operation. We exploit the temperature dependence of the MLG electrical resistance to measure the local heating of the QCL chip. The results are further validated through microprobe photoluminescence experiments, performed on the front-facet of the electrically driven QCL. We extract a heterostructure cross-plane conductivity of k⊥= 10.2 W/m·K, in agreement with previous theoretical and experimental reports. Our integrated system endows THz QCLs with a fast (∼30 ms) temperature sensor, providing a tool to reach full electrical and thermal control on laser operation. This can be exploited, inter alia, to stabilize the emission of THz frequency combs, with potential impact on quantum technologies and high-precision spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL