Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 276
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(4): 520-529, 2021 04.
Article in English | MEDLINE | ID: mdl-33753942

ABSTRACT

Patients with myelodysplastic syndromes (MDSs) display severe anemia but the mechanisms underlying this phenotype are incompletely understood. Right open-reading-frame kinase 2 (RIOK2) encodes a protein kinase located at 5q15, a region frequently lost in patients with MDS del(5q). Here we show that hematopoietic cell-specific haploinsufficient deletion of Riok2 (Riok2f/+Vav1cre) led to reduced erythroid precursor frequency leading to anemia. Proteomic analysis of Riok2f/+Vav1cre erythroid precursors suggested immune system activation, and transcriptomic analysis revealed an increase in p53-dependent interleukin (IL)-22 in Riok2f/+Vav1cre CD4+ T cells (TH22). Further, we discovered that the IL-22 receptor, IL-22RA1, was unexpectedly present on erythroid precursors. Blockade of IL-22 signaling alleviated anemia not only in Riok2f/+Vav1cre mice but also in wild-type mice. Serum concentrations of IL-22 were increased in the subset of patients with del(5q) MDS as well as patients with anemia secondary to chronic kidney disease. This work reveals a possible therapeutic opportunity for reversing many stress-induced anemias by targeting IL-22 signaling.


Subject(s)
Anemia/metabolism , Antibodies, Neutralizing/pharmacology , Erythroid Cells/metabolism , Erythropoiesis/drug effects , Interleukins/antagonists & inhibitors , Myelodysplastic Syndromes/drug therapy , Receptors, Interleukin/metabolism , Anemia/blood , Anemia/immunology , Anemia/prevention & control , Animals , Cells, Cultured , Cellular Microenvironment , Disease Models, Animal , Erythroid Cells/immunology , Humans , Interleukins/immunology , Interleukins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Receptors, Interleukin/genetics , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Interleukin-22
2.
Nature ; 621(7978): 404-414, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648862

ABSTRACT

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Subject(s)
Epitopes , Gene Editing , Immunotherapy , Leukemia, Myeloid, Acute , Animals , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigens, CD34/metabolism , Bone Marrow Transplantation , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Hematopoiesis , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Heterografts/immunology , Immunotherapy/adverse effects , Immunotherapy/methods , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Receptors, Chimeric Antigen/immunology , Recurrence , T-Lymphocytes/immunology , Transplantation Conditioning , Tumor Escape , Xenograft Model Antitumor Assays
4.
Nature ; 590(7844): 157-162, 2021 02.
Article in English | MEDLINE | ID: mdl-33361812

ABSTRACT

Tumour-associated antigens (TAAs) comprise a large set of non-mutated cellular antigens recognized by T cells in human and murine cancers. Their potential as targets for immunotherapy has been explored for more than two decades1, yet the origins of TAA-specific T cells remain unclear. While tumour cells may be an important source of TAAs for T cell priming2, several recent studies suggest that infection with some viruses, including Epstein-Barr virus and influenza virus can elicit T cell responses against abnormally expressed cellular antigens that function as TAAs3,4. However, the cellular and molecular basis of such responses remains undefined. Here we show that expression of the Epstein-Barr virus signalling protein LMP1 in B cells provokes T cell responses to multiple TAAs. LMP1 signalling leads to overexpression of many cellular antigens previously shown to be TAAs, their presentation on major histocompatibility complex classes I (MHC-I) and II (MHC-II) (mainly through the endogenous pathway) and the upregulation of costimulatory ligands CD70 and OX40L, thereby inducing potent cytotoxic CD4+ and CD8+ T cell responses. These findings delineate a mechanism of infection-induced anti-tumour immunity. Furthermore, by ectopically expressing LMP1 in tumour B cells from patients with cancer and thereby enabling them to prime T cells, we develop a general approach for rapid production of autologous cytotoxic CD4+ T cells against a wide range of endogenous tumour antigens, such as TAAs and neoantigens, for treating B cell malignancies. This work stresses the need to revisit classical concepts concerning viral and tumour immunity, which will be critical to fully understand the impact of common infections on human health and to improve the rational design of immune approaches to treatment of cancers.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/immunology , Herpesvirus 4, Human/immunology , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Viral Matrix Proteins/immunology , Animals , Antigens, Neoplasm/immunology , CD27 Ligand/immunology , Cell Line, Tumor , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , OX40 Ligand/immunology
5.
Blood ; 143(10): 895-911, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37890146

ABSTRACT

ABSTRACT: A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αß+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αß+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αß+ memory T cells to improve the outcome in patients with MM.


Subject(s)
Antineoplastic Agents , CD8 Antigens , Induced Pluripotent Stem Cells , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Induced Pluripotent Stem Cells/metabolism , B-Cell Maturation Antigen/metabolism , T-Lymphocytes, Cytotoxic , Antineoplastic Agents/metabolism
6.
Blood ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781564

ABSTRACT

We report on the first-in-human clinical trial using chimeric antigen receptor (CAR) T-cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies (clinicaltrials.gov NCT04136275). Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T-cells. CAR-37 T-cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4/5 patients. Tumor responses were observed in 4/5 patients, with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in two of these patients, efforts to ablate CAR-37 T-cells (which were engineered to co-express truncated EGFR) with cetuximab, were unsuccessful. Hematopoiesis was restored in these two patients following allogeneic hematopoietic stem cell transplantation. No other severe, non-hematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T-cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of IL-18, with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients relative to both cytopenic and non-cytopenic cohorts of CAR-19-treated cohorts of patients. In conclusion, CAR-37 T-cells exhibited anti-tumor activity, with significant CAR expansion and cytokine production. CAR-37 T-cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant.

7.
Blood ; 141(15): 1817-1830, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36706355

ABSTRACT

The challenge of eradicating leukemia in patients with acute myelogenous leukemia (AML) after initial cytoreduction has motivated modern efforts to combine synergistic active modalities including immunotherapy. Recently, the ETCTN/CTEP 10026 study tested the combination of the DNA methyltransferase inhibitor decitabine together with the immune checkpoint inhibitor ipilimumab for AML/myelodysplastic syndrome (MDS) either after allogeneic hematopoietic stem cell transplantation (HSCT) or in the HSCT-naïve setting. Integrative transcriptome-based analysis of 304 961 individual marrow-infiltrating cells for 18 of 48 subjects treated on study revealed the strong association of response with a high baseline ratio of T to AML cells. Clinical responses were predominantly driven by decitabine-induced cytoreduction. Evidence of immune activation was only apparent after ipilimumab exposure, which altered CD4+ T-cell gene expression, in line with ongoing T-cell differentiation and increased frequency of marrow-infiltrating regulatory T cells. For post-HSCT samples, relapse could be attributed to insufficient clearing of malignant clones in progenitor cell populations. In contrast to AML/MDS bone marrow, the transcriptomes of leukemia cutis samples from patients with durable remission after ipilimumab monotherapy showed evidence of increased infiltration with antigen-experienced resident memory T cells and higher expression of CTLA-4 and FOXP3. Altogether, activity of combined decitabine and ipilimumab is impacted by cellular expression states within the microenvironmental niche of leukemic cells. The inadequate elimination of leukemic progenitors mandates urgent development of novel approaches for targeting these cell populations to generate long-lasting responses. This trial was registered at www.clinicaltrials.gov as #NCT02890329.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Ipilimumab/therapeutic use , Decitabine/therapeutic use , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Recurrence
8.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967302

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , B-Lymphocytes , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , Disease Models, Animal , Mice, Transgenic , Male , Female , Mice, Inbred C57BL , Immunomodulation , Middle Aged
9.
Immunity ; 45(1): 209-23, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27438772

ABSTRACT

CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment.


Subject(s)
Calcium Signaling , Inflammation/immunology , Lupus Erythematosus, Systemic/immunology , Phospholipase C gamma/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , fas Receptor/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Interferon-gamma/metabolism , Interleukin-17/metabolism , Lysophospholipids/metabolism , Mice , Mice, Inbred MRL lpr , Peptide Fragments/administration & dosage , Peptide Fragments/genetics , Phospholipase C gamma/genetics , Protein Interaction Domains and Motifs/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Transcriptome , Transendothelial and Transepithelial Migration , fas Receptor/genetics
10.
Nature ; 565(7738): 234-239, 2019 01.
Article in English | MEDLINE | ID: mdl-30568305

ABSTRACT

Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Glioblastoma/therapy , T-Lymphocytes/immunology , Adult , Aged , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dexamethasone/administration & dosage , Glioblastoma/diagnosis , Glioblastoma/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Proteins/genetics , Young Adult
11.
Proc Natl Acad Sci U S A ; 119(25): e2122379119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696582

ABSTRACT

Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.


Subject(s)
Immunologic Memory , Immunological Memory Cells , Immunotherapy, Adoptive , Killer Cells, Natural , Leukemia, Myeloid, Acute , Nucleophosmin , Receptors, Chimeric Antigen , HLA-A2 Antigen/immunology , Humans , Immunological Memory Cells/immunology , Immunological Memory Cells/transplantation , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nucleophosmin/genetics , Nucleophosmin/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35058359

ABSTRACT

Allogeneic hematopoietic cell transplantation (HCT) provides effective treatment for hematologic malignancies and immune disorders. Monitoring of posttransplant complications is critical, yet current diagnostic options are limited. Here, we show that cell-free DNA (cfDNA) in blood is a versatile analyte for monitoring of the most important complications that occur after HCT: graft-versus-host disease (GVHD), a frequent immune complication of HCT, infection, relapse of underlying disease, and graft failure. We demonstrate that these therapeutic complications are informed from a single assay, low-coverage bisulfite sequencing of cfDNA, followed by disease-specific bioinformatic analyses. To inform GVHD, we profile cfDNA methylation marks to trace the cfDNA tissues-of-origin and to quantify tissue-specific injury. To inform infection, we implement metagenomic cfDNA profiling. To inform cancer relapse, we implement analyses of tumor-specific genomic aberrations. Finally, to detect graft failure, we quantify the proportion of donor- and recipient-specific cfDNA. We applied this assay to 170 plasma samples collected from 27 HCT recipients at predetermined timepoints before and after allogeneic HCT. We found that the abundance of solid-organ-derived cfDNA in the blood at 1 mo after HCT is predictive of acute GVHD (area under the curve, 0.88). Metagenomic profiling of cfDNA revealed the frequent occurrence of viral reactivation in this patient population. The fraction of donor-specific cfDNA was indicative of relapse and remission, and the fraction of tumor-specific cfDNA was informative of cancer relapse. This proof-of-principle study shows that cfDNA has the potential to improve the care of allogeneic HCT recipients by enabling earlier detection and better prediction of the complex array of complications that occur after HCT.


Subject(s)
Cell-Free Nucleic Acids , DNA Fingerprinting , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Biomarkers , DNA Methylation , Disease Progression , Graft vs Host Disease/blood , Hematopoietic Stem Cell Transplantation/methods , Humans , Liquid Biopsy/methods , Organ Specificity/genetics , Postoperative Complications/blood , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Recurrence , Transplantation, Homologous
13.
N Engl J Med ; 384(3): 205-215, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33283990

ABSTRACT

BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).


Subject(s)
Anemia, Sickle Cell/therapy , Fetal Hemoglobin/biosynthesis , Genetic Therapy , RNA Interference , Repressor Proteins/genetics , gamma-Globins/metabolism , Adolescent , Adult , Anemia, Sickle Cell/genetics , Child , Down-Regulation , Female , Fetal Hemoglobin/genetics , Gene Knockdown Techniques , Genetic Vectors , Humans , Male , Pilot Projects , RNA, Small Interfering , Repressor Proteins/metabolism , Transplantation, Autologous , Young Adult , gamma-Globins/genetics
14.
Blood ; 139(24): 3546-3557, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35286378

ABSTRACT

Older patients with acute myeloid leukemia (AML) have high relapse risk and poor survival after allogeneic hematopoietic cell transplantation (HCT). Younger patients may receive myeloablative conditioning to mitigate relapse risk associated with high-risk genetics or measurable residual disease (MRD), but older adults typically receive reduced-intensity conditioning (RIC) to limit toxicity. To identify factors that drive HCT outcomes in older patients, we performed targeted mutational analysis (variant allele fraction ≥2%) on diagnostic samples from 295 patients with AML aged ≥60 years who underwent HCT in first complete remission, 91% of whom received RIC, and targeted duplex sequencing at remission in a subset comprising 192 patients. In a multivariable model for leukemia-free survival (LFS) including baseline genetic and clinical variables, we defined patients with low (3-year LFS, 85%), intermediate (55%), high (35%), and very high (7%) risk. Before HCT, 79.7% of patients had persistent baseline mutations, including 18.3% with only DNMT3A or TET2 (DT) mutations and 61.4% with other mutations (MRD positive). In univariable analysis, MRD positivity was associated with increased relapse and inferior LFS, compared with DT and MRD-negative mutations. However, in a multivariable model accounting for baseline risk, MRD positivity had no independent impact on LFS, most likely because of its significant association with diagnostic genetic characteristics, including MDS-associated gene mutations, TP53 mutations, and high-risk karyotype. In summary, molecular associations with MRD positivity and transplant outcomes in older patients with AML are driven primarily by baseline genetics, not by mutations present in remission. In this group of patients, where high-intensity conditioning carries substantial risk of toxicity, alternative approaches to mitigating MRD-associated relapse risk are needed.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Aged , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Recurrence , Retrospective Studies , Transplantation Conditioning , Transplantation, Homologous
15.
Blood ; 139(19): 2983-2997, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35226736

ABSTRACT

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.


Subject(s)
Bronchiolitis Obliterans , Enhancer of Zeste Homolog 2 Protein , Germinal Center , Graft vs Host Disease , Proteins , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Bronchiolitis Obliterans/genetics , Bronchiolitis Obliterans/metabolism , Bronchiolitis Obliterans/pathology , Chronic Disease , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Germinal Center/drug effects , Germinal Center/pathology , Graft vs Host Disease/drug therapy , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Humans , Mice , Proteins/metabolism , Transcriptome
17.
N Engl J Med ; 382(20): 1926-1932, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32402162

ABSTRACT

We report the implantation of patient-derived midbrain dopaminergic progenitor cells, differentiated in vitro from autologous induced pluripotent stem cells (iPSCs), in a patient with idiopathic Parkinson's disease. The patient-specific progenitor cells were produced under Good Manufacturing Practice conditions and characterized as having the phenotypic properties of substantia nigra pars compacta neurons; testing in a humanized mouse model (involving peripheral-blood mononuclear cells) indicated an absence of immunogenicity to these cells. The cells were implanted into the putamen (left hemisphere followed by right hemisphere, 6 months apart) of a patient with Parkinson's disease, without the need for immunosuppression. Positron-emission tomography with the use of fluorine-18-L-dihydroxyphenylalanine suggested graft survival. Clinical measures of symptoms of Parkinson's disease after surgery stabilized or improved at 18 to 24 months after implantation. (Funded by the National Institutes of Health and others.).


Subject(s)
Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/transplantation , Parkinson Disease/therapy , Pars Compacta/cytology , Aged , Animals , Basal Ganglia/diagnostic imaging , Basal Ganglia/metabolism , Cell Differentiation , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Follow-Up Studies , Humans , Induced Pluripotent Stem Cells/immunology , Male , Mice , Mice, SCID , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Putamen/diagnostic imaging , Tomography, X-Ray Computed , Transplantation, Autologous , Transplantation, Homologous
18.
Blood ; 137(23): 3212-3217, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33720354

ABSTRACT

Relapsed myeloid disease after allogeneic stem cell transplantation (HSCT) remains largely incurable. We previously demonstrated the potent activity of immune checkpoint blockade in this clinical setting with ipilimumab or nivolumab. To define the molecular and cellular pathways by which CTLA-4 blockade with ipilimumab can reinvigorate an effective graft-versus-leukemia (GVL) response, we integrated transcriptomic analysis of leukemic biopsies with immunophenotypic profiling of matched peripheral blood samples collected from patients treated with ipilimumab following HSCT on the Experimental Therapeutics Clinical Trials Network 9204 trial. Response to ipilimumab was associated with transcriptomic evidence of increased local CD8+ T-cell infiltration and activation. Systemically, ipilimumab decreased naïve and increased memory T-cell populations and increased expression of markers of T-cell activation and costimulation such as PD-1, HLA-DR, and ICOS, irrespective of response. However, responding patients were characterized by higher turnover of T-cell receptor sequences in peripheral blood and showed increased expression of proinflammatory chemokines in plasma that was further amplified by ipilimumab. Altogether, these data highlight the compositional T-cell shifts and inflammatory pathways induced by ipilimumab both locally and systemically that associate with successful GVL outcomes. This trial was registered at www.clinicaltrials.gov as #NCT01822509.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen , Gene Expression Regulation, Leukemic/drug effects , Hematopoietic Stem Cell Transplantation , Ipilimumab/administration & dosage , Neoplasm Proteins , Allogeneic Cells , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Female , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/therapy , Male , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
19.
Nat Rev Mol Cell Biol ; 12(2): 126-31, 2011 02.
Article in English | MEDLINE | ID: mdl-21253000

ABSTRACT

Mesenchymal stem cells (MSCs) are a diverse subset of multipotent precursors present in the stromal fraction of many adult tissues and have drawn intense interest from translational and basic investigators. MSCs have been operationally defined by their ability to differentiate into osteoblasts, adipocytes and chondrocytes after in vitro expansion. Nevertheless, their identity in vivo, heterogeneity, anatomical localization and functional roles in adult tissue homeostasis have remained enigmatic and are only just starting to be uncovered.


Subject(s)
Mesenchymal Stem Cells/cytology , Adult Stem Cells/cytology , Animals , Cell Differentiation , Cell Separation , Embryonic Stem Cells/cytology , Humans , Multipotent Stem Cells/cytology , Stromal Cells/cytology
20.
Nature ; 547(7662): 217-221, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28678778

ABSTRACT

Effective anti-tumour immunity in humans has been associated with the presence of T cells directed at cancer neoantigens, a class of HLA-bound peptides that arise from tumour-specific mutations. They are highly immunogenic because they are not present in normal tissues and hence bypass central thymic tolerance. Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response, their systematic discovery and evaluation only became feasible with the recent availability of massively parallel sequencing for detection of all coding mutations within tumours, and of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules. We hypothesized that vaccination with neoantigens can both expand pre-existing neoantigen-specific T-cell populations and induce a broader repertoire of new T-cell specificities in cancer patients, tipping the intra-tumoural balance in favour of enhanced tumour control. Here we demonstrate the feasibility, safety, and immunogenicity of a vaccine that targets up to 20 predicted personal tumour neoantigens. Vaccine-induced polyfunctional CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%) of the 97 unique neoantigens used across patients, respectively. These T cells discriminated mutated from wild-type antigens, and in some cases directly recognized autologous tumour. Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells. These data provide a strong rationale for further development of this approach, alone and in combination with checkpoint blockade or other immunotherapies.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Precision Medicine/methods , Amino Acid Sequence , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, Neoplasm/chemistry , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/adverse effects , Cancer Vaccines/chemistry , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II/immunology , Humans , Machine Learning , Melanoma/genetics , Mutation , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/prevention & control , Patient Safety , Programmed Cell Death 1 Receptor/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL