Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Eur J Neurol ; 30(2): 511-526, 2023 02.
Article in English | MEDLINE | ID: mdl-36260368

ABSTRACT

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS: We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS: We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS: Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.


Subject(s)
Charcot-Marie-Tooth Disease , Myosins , Animals , Humans , Mice , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Mutation/genetics , Pedigree , Phenotype , Proteins , Sciatic Nerve/pathology , Myosins/genetics
2.
Cell Mol Life Sci ; 78(1): 351-372, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32280996

ABSTRACT

The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.


Subject(s)
Charcot-Marie-Tooth Disease/pathology , Laminopathies/pathology , rab GTP-Binding Proteins/genetics , Cathepsins/metabolism , Cell Movement , Cells, Cultured , Cellular Reprogramming , Charcot-Marie-Tooth Disease/metabolism , Endocytosis , ErbB Receptors/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Laminopathies/metabolism , Lysosomes/metabolism , Matrix Metalloproteinase 2/metabolism , Polymorphism, Single Nucleotide , Proteolysis , RNA Interference , RNA, Small Interfering/metabolism , Sensory Receptor Cells/metabolism , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , rac1 GTP-Binding Protein/metabolism
3.
Glia ; 68(1): 95-110, 2020 01.
Article in English | MEDLINE | ID: mdl-31479164

ABSTRACT

We have previously reported that prostaglandin D2 Synthase (L-PGDS) participates in peripheral nervous system (PNS) myelination during development. We now describe the role of L-PGDS in the resolution of PNS injury, similarly to other members of the prostaglandin synthase family, which are important for Wallerian degeneration (WD) and axonal regeneration. Our analyses show that L-PGDS expression is modulated after injury in both sciatic nerves and dorsal root ganglia neurons, indicating that it might play a role in the WD process. Accordingly, our data reveals that L-PGDS regulates macrophages phagocytic activity through a non-cell autonomous mechanism, allowing myelin debris clearance and favoring axonal regeneration and remyelination. In addition, L-PGDS also appear to control macrophages accumulation in injured nerves, possibly by regulating the blood-nerve barrier permeability and SOX2 expression levels in Schwann cells. Collectively, our results suggest that L-PGDS has multiple functions during nerve regeneration and remyelination. Based on the results of this study, we posit that L-PGDS acts as an anti-inflammatory agent in the late phases of WD, and cooperates in the resolution of the inflammatory response. Thus, pharmacological activation of the L-PGDS pathway might prove beneficial in resolving peripheral nerve injury.


Subject(s)
Intramolecular Oxidoreductases/biosynthesis , Lipocalins/biosynthesis , Macrophage Activation/physiology , Nerve Regeneration/physiology , Sciatic Neuropathy/enzymology , Animals , Female , Intramolecular Oxidoreductases/genetics , Lipocalins/genetics , Male , Mice , Mice, Inbred C57BL , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Sciatic Neuropathy/genetics , Sciatic Neuropathy/pathology
4.
Hum Mol Genet ; 24(2): 383-96, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25187576

ABSTRACT

Mutations of FIG4 are responsible for Yunis-Varón syndrome, familial epilepsy with polymicrogyria, and Charcot-Marie-Tooth type 4J neuropathy (CMT4J). Although loss of the FIG4 phospholipid phosphatase consistently causes decreased PtdIns(3,5)P2 levels, cell-specific sensitivity to partial loss of FIG4 function may differentiate FIG4-associated disorders. CMT4J is an autosomal recessive neuropathy characterized by severe demyelination and axonal loss in human, with both motor and sensory involvement. However, it is unclear whether FIG4 has cell autonomous roles in both motor neurons and Schwann cells, and how loss of FIG4/PtdIns(3,5)P2-mediated functions contribute to the pathogenesis of CMT4J. Here, we report that mice with conditional inactivation of Fig4 in motor neurons display neuronal and axonal degeneration. In contrast, conditional inactivation of Fig4 in Schwann cells causes demyelination and defects in autophagy-mediated degradation. Moreover, Fig4-regulated endolysosomal trafficking in Schwann cells is essential for myelin biogenesis during development and for proper regeneration/remyelination after injury. Our data suggest that impaired endolysosomal trafficking in both motor neurons and Schwann cells contributes to CMT4J neuropathy.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Flavoproteins/metabolism , Motor Neurons/metabolism , Schwann Cells/metabolism , Animals , Charcot-Marie-Tooth Disease/genetics , Endosomes/metabolism , Flavoproteins/genetics , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Phosphatidylinositols/metabolism , Phosphoinositide Phosphatases , Protein Transport
5.
Development ; 139(7): 1359-67, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22357929

ABSTRACT

Myelination is a complex process that requires coordinated Schwann cell-axon interactions during development and regeneration. Positive and negative regulators of myelination have been recently described, and can belong either to Schwann cells or neurons. Vimentin is a fibrous component present in both Schwann cell and neuron cytoskeleton, the expression of which is timely and spatially regulated during development and regeneration. We now report that vimentin negatively regulates myelination, as loss of vimentin results in peripheral nerve hypermyelination, owing to increased myelin thickness in vivo, in transgenic mice and in vitro in a myelinating co-culture system. We also show that this is due to a neuron-autonomous increase in the levels of axonal neuregulin 1 (NRG1) type III. Accordingly, genetic reduction of NRG1 type III in vimentin-null mice rescues hypermyelination. Finally, we demonstrate that vimentin acts synergistically with TACE, a negative regulator of NRG1 type III activity, as shown by hypermyelination of double Vim/Tace heterozygous mice. Our results reveal a novel role for the intermediate filament vimentin in myelination, and indicate vimentin as a regulator of NRG1 type III function.


Subject(s)
Gene Expression Regulation, Developmental , Myelin Sheath/metabolism , Peripheral Nerves/metabolism , Vimentin/physiology , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Axons/metabolism , Coculture Techniques , Cytoskeleton/metabolism , Heterozygote , Humans , Mice , Mice, Inbred C57BL , Neuregulin-1/metabolism , Rats , Schwann Cells/cytology
6.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352425

ABSTRACT

Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.

7.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34874913

ABSTRACT

Oligodendrocytes are the primary target of demyelinating disorders, and progressive neurodegenerative changes may evolve in the CNS. DNA damage and oxidative stress are considered key pathogenic events, but the underlying molecular mechanisms remain unclear. Moreover, animal models do not fully recapitulate human diseases, complicating the path to effective treatments. Here we report that mice with cell-autonomous deletion of the nuclear COP9 signalosome component CSN5 (JAB1) in oligodendrocytes develop DNA damage and defective DNA repair in myelinating glial cells. Interestingly, oligodendrocytes lacking JAB1 expression underwent a senescence-like phenotype that fostered chronic inflammation and oxidative stress. These mutants developed progressive CNS demyelination, microglia inflammation, and neurodegeneration, with severe motor deficits and premature death. Notably, blocking microglia inflammation did not prevent neurodegeneration, whereas the deletion of p21CIP1 but not p16INK4a pathway ameliorated the disease. We suggest that senescence is key to sustaining neurodegeneration in demyelinating disorders and may be considered a potential therapeutic target.


Subject(s)
Aging/metabolism , COP9 Signalosome Complex/deficiency , Gene Deletion , Neurodegenerative Diseases/metabolism , Oligodendroglia/metabolism , Peptide Hydrolases/deficiency , Aging/genetics , Aging/pathology , Animals , COP9 Signalosome Complex/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Oligodendroglia/pathology , Peptide Hydrolases/metabolism
8.
EMBO Mol Med ; 8(12): 1438-1454, 2016 12.
Article in English | MEDLINE | ID: mdl-27799291

ABSTRACT

Charcot-Marie-Tooth (CMT) neuropathies are highly heterogeneous disorders caused by mutations in more than 70 genes, with no available treatment. Thus, it is difficult to envisage a single suitable treatment for all pathogenetic mechanisms. Axonal Neuregulin 1 (Nrg1) type III drives Schwann cell myelination and determines myelin thickness by ErbB2/B3-PI3K-Akt signaling pathway activation. Nrg1 type III is inhibited by the α-secretase Tace, which negatively regulates PNS myelination. We hypothesized that modulation of Nrg1 levels and/or secretase activity may constitute a unifying treatment strategy for CMT neuropathies with focal hypermyelination as it could restore normal levels of myelination. Here we show that in vivo delivery of Niaspan, a FDA-approved drug known to enhance TACE activity, efficiently rescues myelination in the Mtmr2-/- mouse, a model of CMT4B1 with myelin outfoldings, and in the Pmp22+/- mouse, which reproduces HNPP (hereditary neuropathy with liability to pressure palsies) with tomacula. Importantly, we also found that Niaspan reduces hypermyelination of Vim (vimentin)-/- mice, characterized by increased Nrg1 type III and Akt activation, thus corroborating the hypothesis that Niaspan treatment downregulates Nrg1 type III signaling.


Subject(s)
ADAM17 Protein/metabolism , Charcot-Marie-Tooth Disease/drug therapy , Charcot-Marie-Tooth Disease/pathology , Neuroprotective Agents/administration & dosage , Niacin/administration & dosage , Vitamin B Complex/administration & dosage , Animals , Disease Models, Animal , Mice , Mice, Knockout , Treatment Outcome
9.
EMBO Mol Med ; 7(12): 1513-28, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26543057

ABSTRACT

Intra-arterial transplantation of mesoangioblasts proved safe and partially efficacious in preclinical models of muscular dystrophy. We now report the first-in-human, exploratory, non-randomized open-label phase I-IIa clinical trial of intra-arterial HLA-matched donor cell transplantation in 5 Duchenne patients. We administered escalating doses of donor-derived mesoangioblasts in limb arteries under immunosuppressive therapy (tacrolimus). Four consecutive infusions were performed at 2-month intervals, preceded and followed by clinical, laboratory, and muscular MRI analyses. Two months after the last infusion, a muscle biopsy was performed. Safety was the primary endpoint. The study was relatively safe: One patient developed a thalamic stroke with no clinical consequences and whose correlation with mesoangioblast infusion remained unclear. MRI documented the progression of the disease in 4/5 patients. Functional measures were transiently stabilized in 2/3 ambulant patients, but no functional improvements were observed. Low level of donor DNA was detected in muscle biopsies of 4/5 patients and donor-derived dystrophin in 1. Intra-arterial transplantation of donor mesoangioblasts in human proved to be feasible and relatively safe. Future implementation of the protocol, together with a younger age of patients, will be needed to approach efficacy.


Subject(s)
Infusions, Intra-Arterial/statistics & numerical data , Muscular Dystrophy, Duchenne/surgery , Muscular Dystrophy, Duchenne/therapy , Cell- and Tissue-Based Therapy , Histocompatibility Testing , Humans
10.
J Exp Med ; 211(1): 29-43, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24344238

ABSTRACT

Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211- and, possibly, neuregulin 1 (Nrg1)-derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain-binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies.


Subject(s)
Axons/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurogenesis/physiology , Peptide Hydrolases/metabolism , Schwann Cells/physiology , Animals , Blotting, Western , Body Weights and Measures , Bromodeoxyuridine , COP9 Signalosome Complex , Cell Differentiation/physiology , Cell Proliferation , Immunohistochemistry , In Situ Nick-End Labeling , Intracellular Signaling Peptides and Proteins/genetics , Laminin/metabolism , Mice , Mice, Knockout , Peptide Hydrolases/genetics , Rotarod Performance Test
11.
PLoS One ; 7(2): e32059, 2012.
Article in English | MEDLINE | ID: mdl-22363796

ABSTRACT

Remodeling of extracellular matrix (ECM) is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR) is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA) promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies.


Subject(s)
Fibrinolysis , Nerve Crush , Nerve Regeneration/physiology , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/physiopathology , Receptors, Urokinase Plasminogen Activator/metabolism , Adult , Aged , Animals , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Fibrin/metabolism , Fibrinolysis/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Myelin Sheath/pathology , Nerve Regeneration/drug effects , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/pathology , Receptors, Urokinase Plasminogen Activator/deficiency , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Urokinase-Type Plasminogen Activator/pharmacology , Urokinase-Type Plasminogen Activator/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL