Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cancer Res ; 80(19): 4278-4287, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32747364

ABSTRACT

Advanced ovarian cancers are a leading cause of cancer-related death in women and are currently treated with surgery and chemotherapy. This standard of care is often temporarily successful but exhibits a high rate of relapse, after which, treatment options are few. Here we investigate whether biomarker-guided use of multiple targeted therapies, including small molecules and antibody-drug conjugates, is a viable alternative. A panel of patient-derived ovarian cancer xenografts (PDX), similar in genetics and chemotherapy responsiveness to human tumors, was exposed to 21 monotherapies and combination therapies. Three monotherapies and one combination were found to be active in different subsets of PDX. Analysis of gene expression data identified biomarkers associated with responsiveness to each of the three targeted therapies, none of which directly inhibits an oncogenic driver. While no single treatment had as high a response rate as chemotherapy, nearly 90% of PDXs were eligible for and responded to at least one biomarker-guided treatment, including tumors resistant to standard chemotherapy. The distribution of biomarker positivity in The Cancer Genome Atlas data suggests the potential for a similar precision approach in human patients. SIGNIFICANCE: This study exploits a panel of patient-derived xenografts to demonstrate that most ovarian tumors can be matched to effective biomarker-guided treatments.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/genetics , Ovarian Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/pathology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Molecular Targeted Therapy/methods , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Precision Medicine , Proof of Concept Study
2.
Cancer Res ; 78(6): 1537-1548, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29343524

ABSTRACT

Resistance to the RAF inhibitor vemurafenib arises commonly in melanomas driven by the activated BRAF oncogene. Here, we report antitumor properties of RAF709, a novel ATP-competitive kinase inhibitor with high potency and selectivity against RAF kinases. RAF709 exhibited a mode of RAF inhibition distinct from RAF monomer inhibitors such as vemurafenib, showing equal activity against both RAF monomers and dimers. As a result, RAF709 inhibited MAPK signaling activity in tumor models harboring either BRAFV600 alterations or mutant N- and KRAS-driven signaling, with minimal paradoxical activation of wild-type RAF. In cell lines and murine xenograft models, RAF709 demonstrated selective antitumor activity in tumor cells harboring BRAF or RAS mutations compared with cells with wild-type BRAF and RAS genes. RAF709 demonstrated a direct pharmacokinetic/pharmacodynamic relationship in in vivo tumor models harboring KRAS mutation. Furthermore, RAF709 elicited regression of primary human tumor-derived xenograft models with BRAF, NRAS, or KRAS mutations with excellent tolerability. Our results support further development of inhibitors like RAF709, which represents a next-generation RAF inhibitor with unique biochemical and cellular properties that enables antitumor activities in RAS-mutant tumors.Significance: In an effort to develop RAF inhibitors with the appropriate pharmacological properties to treat RAS mutant tumors, RAF709, a compound with potency, selectivity, and in vivo properties, was developed that will allow preclinical therapeutic hypothesis testing, but also provide an excellent probe to further unravel the complexities of RAF kinase signaling. Cancer Res; 78(6); 1537-48. ©2018 AACR.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Proto-Oncogene Proteins B-raf/genetics , raf Kinases/antagonists & inhibitors , ras Proteins/genetics , 2,2'-Dipyridyl/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice, Nude , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Xenograft Model Antitumor Assays , raf Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL