Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Virol ; 87(16): 9290-300, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23785204

ABSTRACT

Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.


Subject(s)
Conserved Sequence , Cross Protection , Epitopes, B-Lymphocyte/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Neuraminidase/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Cross Reactions , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Immunization, Passive , Mice , Mice, Inbred BALB C , Neuraminidase/genetics , Orthomyxoviridae Infections/prevention & control , Survival Analysis
2.
Virol J ; 10: 198, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23777453

ABSTRACT

BACKGROUND: To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern that immune mechanisms identified in this model may not reflect those that protect against infectious virus particles delivered directly to the lower respiratory tract as an aerosol. METHOD: To evaluate differences in protection against instilled and inhaled virus, mice were immunized with influenza antigens known to induce antibody or cell-mediated responses and then challenged with 100 LD50 A/PR/8/34 (PR8) in the form of aerosol (inhaled) or liquid suspension (instilled). RESULTS: Mice immunized with recombinant adenovirus (Ad) expressing hemagglutinin were protected against weight loss and death in both challenge models, however immunization with Ad expressing nucleoprotein of influenza A (NPA) or M2 resulted in greater protection against inhaled aerosolized virus than virus instilled in liquid suspension. Ad-M2, but not Ad-NPA-immunized mice were protected against a lower instillation challenge dose. CONCLUSIONS: These results demonstrate differences in protection that are dependent on challenge method, and suggest that cell-mediated immunity may be more accurately demonstrated in mouse inhalation studies. Furthermore, the data suggest immune mechanisms generally characterized as incomplete or weak in mouse models using liquid intranasal challenge may offer greater immunity against influenza infection than previously thought.


Subject(s)
Aerosols/administration & dosage , Immunity, Cellular , Immunity, Humoral , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Pneumonia, Viral/immunology , Animals , Body Weight , Chick Embryo , Disease Models, Animal , Female , Influenza Vaccines/administration & dosage , Mice , Mice, Inbred BALB C , Survival Analysis
3.
Article in English | MEDLINE | ID: mdl-22919665

ABSTRACT

Influenza continues to cause widespread disease and death during winter months. In preclinical studies to evaluate the potential efficacy of drugs and vaccines, influenza challenge virus is usually instilled into the noses of animals in the form of large liquid drops. Since inhalation of aerosolized influenza is commonly associated with human transmission, instillation of challenge virus raises uncertainty about the applicability of results. In order to compare the challenge methods, we established conditions to generate influenza aerosols with a mass median aerodynamic diameter (MMAD) of 1 µm that were delivered to mice in a nose-only inhalation system. In this report, we describe the system and compare the 50% lethal dose (LD(50)) of instilled and inhaled A/PR/8/34 (PR8) in BALB/c mice. The estimated LD(50) for inhaled virus was 8.7 plaque forming units (PFU) and the mean time to death was 7.7 days, whereas the estimated LD(50) for instilled virus was 51.6 PFU and the mean time to death was 8.2 days. Our results show that mice are more sensitive to inhaled virus than virus delivered by intranasal instillation. The murine nose-only inhalation model of influenza infection can be used to infect large numbers of animals simultaneously with well-characterized, homogenous PR8 bioaerosol in a controlled and reproducible manner. This model provides the means to evaluate the efficacy of drug and vaccine candidates against the relevant route of challenge, thereby providing data that may better predict clinical outcome.


Subject(s)
Disease Models, Animal , Influenza A virus/pathogenicity , Inhalation Exposure , Orthomyxoviridae Infections/virology , Aerosols , Animals , Lethal Dose 50 , Mice , Mice, Inbred BALB C , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL