Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Nature ; 602(7897): 481-486, 2022 02.
Article in English | MEDLINE | ID: mdl-34942632

ABSTRACT

Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.


Subject(s)
Animals, Wild/virology , COVID-19/veterinary , Deer/virology , Phylogeny , SARS-CoV-2/isolation & purification , Viral Zoonoses/transmission , Viral Zoonoses/virology , Amino Acid Sequence , Amino Acid Substitution , Animals , COVID-19/epidemiology , COVID-19/transmission , Evolution, Molecular , Humans , Male , Ohio/epidemiology , One Health/trends , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Zoonoses/epidemiology
2.
Clin Infect Dis ; 78(3): 637-645, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38207126

ABSTRACT

BACKGROUND: A unique enzootic focus of Mycobacterium bovis in free-ranging deer was identified in northern lower Michigan in 1994, with subsequent evidence of transmission to local cattle herds. Between 2002 and 2017, 3 Michigan deer hunters with M. bovis disease were previously reported. We present 4 additional human cases linked to the zoonotic focus in deer, utilizing genomic epidemiology to confirm close molecular associations among human, deer and cattle M. bovis isolates. METHODS: Identification of human tuberculosis (TB) cases with cultures of M. bovis was provided from the Michigan Department of Health and Human Services (MDHHS) tuberculosis database. Clinical review and interviews focused on risk factors for contact with wildlife and cattle. Whole genome sequences of human isolates were compared with a veterinary library of M. bovis strains to identify those linked to the enzootic focus. RESULTS: Three confirmed and 1 probable human case with M. bovis disease were identified between 2019 and 2022, including cutaneous disease, 2 severe pulmonary disease cases, and human-to-human transmission. The 3 human isolates had 0-3 single-nucleotide polymorphisms (SNPs) with M. bovis strains circulating in wild deer and domestic cattle in Michigan. CONCLUSIONS: Spillover of enzootic M. bovis from deer to humans and cattle continues to occur in Michigan. Future studies should examine the routes of transmission and degree of risk to humans through expanded epidemiological surveys. A One Health approach linking human, veterinary and environmental health should address screening for TB infection, public education, and mitigation of transmission.


Subject(s)
Deer , Mycobacterium bovis , Tuberculosis , Animals , Humans , Cattle , Mycobacterium bovis/genetics , Michigan/epidemiology , Deer/microbiology , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/prevention & control , Animals, Wild
3.
BMC Genomics ; 25(1): 545, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822271

ABSTRACT

BACKGROUND: Several single nucleotide polymorphism (SNP) pipelines exist, each offering its own advantages. Among them and described here is vSNP that has been developed over the past decade and is specifically tailored to meet the needs of diagnostic laboratories. Laboratories that aim to provide rapid whole genome sequencing results during outbreak investigations face unique challenges. vSNP addresses these challenges by enabling users to verify and validate sequence accuracy with ease- having utility across various pathogens, being fully auditable, and presenting results that are easy to interpret and can be comprehended by individuals with diverse backgrounds. RESULTS: vSNP has proven effective for real-time phylogenetic analysis of disease outbreaks and eradication efforts, including bovine tuberculosis, brucellosis, virulent Newcastle disease, SARS-CoV-2, African swine fever, and highly pathogenic avian influenza. The pipeline produces easy-to-read SNP matrices, sorted for convenience, as well as corresponding phylogenetic trees, making the output easily understandable. Essential data for verifying SNPs is included in the output, and the process has been divided into two steps for ease of use and faster processing times. vSNP requires minimal computational resources to run and can be run in a wide range of environments. Several utilities have been developed to make analysis more accessible for subject matter experts who may not have computational expertise. CONCLUSION: The vSNP pipeline integrates seamlessly into a diagnostic workflow and meets the criteria for quality control accreditation programs, such as 17025 by the International Organization for Standardization. Its versatility and robustness make it suitable for use with a diverse range of organisms, providing detailed, reproducible, and transparent results, making it a valuable tool in various applications, including phylogenetic analysis performed in real time.


Subject(s)
Phylogeny , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Whole Genome Sequencing/methods , Software , Animals , Humans , Computational Biology/methods
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34732584

ABSTRACT

Widespread human SARS-CoV-2 infections combined with human-wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.


Subject(s)
Deer/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/veterinary , Great Lakes Region/epidemiology , Seroepidemiologic Studies
5.
Appl Environ Microbiol ; 87(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33547057

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle. The Regional Dairy Quality Management Alliance (RDQMA) project is a multistate research program involving MAP isolates taken from three intensively studied commercial dairy farms in the northeastern United States, which emphasized longitudinal data collection of both MAP isolates and animal health in three regional dairy herds for a period of about 7 years. This paper reports the results of a pan-GWAS analysis involving 318 MAP isolates and dairy cow Johne's disease phenotypes, taken from these three farms. Based on our highly curated accessory gene count the pan-GWAS analysis identified several MAP genes associated with bovine Johne's disease phenotypes scored from these three farms, with some of the genes having functions suggestive of possible cause/effect relationships to these phenotypes. This paper reports a pan-genomic comparative analysis between MAP and Mycobacterium tuberculosis, assessing functional Gene Ontology category enrichments between these taxa. Finally, we also provide a population genomic perspective on the effectiveness of herd isolation, involving closed dairy farms, in preventing MAP inter-farm cross infection on a micro-geographic scale.IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle, and enormous economic consequences for the dairy industry. Understanding which genes in this bacterium are correlated with key disease phenotypes can lead to functional experiments targeting these genes and ultimately lead to improved control strategies. This study represents a rare example of a prolonged longitudinal study of dairy cattle where the disease was measured and the bacteria were isolated from the same cows. The genome sequences of over 300 MAP isolates were analyzed for genes that were correlated with a wide range of Johne's disease phenotypes. A number of genes were identified that were significantly associated with several aspects of the disease and suggestive of further experimental follow-up.

6.
J Zoo Wildl Med ; 50(4): 1000-1004, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31926536

ABSTRACT

Mycobacterium orygis, a newly identified member of the Mycobacterium tuberculosis complex, has been isolated predominantly from hoofstock in eastern Africa and the Arabian Peninsula, and sporadically in cattle (Bos taurus indicus), rhesus monkeys (Macaca mulatta), humans, and a greater one-horned rhinoceros (Rhinoceros unicornis) in South Asia. In rhinoceros, tuberculosis typically presents as a chronic progressive respiratory disease. The report describes the postmortem diagnosis of tuberculosis caused by Mycobacterium orygis in a greater one-horned rhinoceros with hind limb paresis due to neural granulomatosis. Serologic assays for detection of antibodies to M. tuberculosis complex proteins before culture results allowed for appropriate herd management protocols to be initiated. Mycobacterium genus-specific polymerase chain reaction assays with direct sequencing allowed timely confirmation of the serologic results. This is the first isolation of M. orygis in the western hemisphere, showing the need for mycobacterial testing of rhinoceros before international shipments and the urgency for validated antemortem M. tuberculosis complex screening assays in rhinoceros species.


Subject(s)
Mycobacterium/isolation & purification , Perissodactyla/microbiology , Tuberculosis, Spinal/veterinary , Animals , Animals, Zoo , Male , Nitriles , Triazines , Tuberculosis, Spinal/epidemiology , Tuberculosis, Spinal/microbiology , Tuberculosis, Spinal/pathology , United States/epidemiology
7.
Article in English | MEDLINE | ID: mdl-30962348

ABSTRACT

Using 894 phylogenetically diverse genomes of the Mycobacterium tuberculosis complex (MTBC), we simulated in silico the ability of the Hain Lifescience GenoType MTBC assay to differentiate the causative agents of tuberculosis. Here, we propose a revised interpretation of this assay to reflect its strengths (e.g., it can distinguish some strains of Mycobacterium canettii and variants of Mycobacterium bovis that are not intrinsically resistant to pyrazinamide) and limitations (e.g., Mycobacterium orygis cannot be differentiated from Mycobacterium africanum).


Subject(s)
Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/classification , Tuberculosis/microbiology , Genotyping Techniques , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification
8.
Mol Ecol ; 28(9): 2192-2205, 2019 05.
Article in English | MEDLINE | ID: mdl-30807679

ABSTRACT

The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white-tailed deer (deer) population. It has potentially substantial implications for the health and well-being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well-observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife-livestock interface, providing insights into bTB management in an endemic system.


Subject(s)
Deer/microbiology , Mycobacterium bovis/genetics , Tuberculosis, Bovine/transmission , Tuberculosis/veterinary , Animals , Cattle , Host-Pathogen Interactions , Livestock/microbiology , Michigan , Mycobacterium bovis/isolation & purification , Mycobacterium bovis/pathogenicity , Phylogeny , Spatio-Temporal Analysis , Tuberculosis/transmission , Tuberculosis, Bovine/prevention & control , Whole Genome Sequencing
9.
J Zoo Wildl Med ; 50(2): 427-436, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31260210

ABSTRACT

A group of zoo-housed little penguins (Eudyptula minor) was diagnosed with mycobacteriosis. While undergoing multidetector computed tomography (MDCT) imaging for an unrelated research project, pulmonary lesions were detected in multiple individuals. In general, birds appeared healthy and free of outward signs of disease. After the loss of three individuals, polyclonal mycobacterial disease due to Mycobacterium avium-intracellulare complex was confirmed. Surviving birds were treated with rifampin (45 mg/kg), ethambutol (30 mg/kg), clarithromycin (10 mg/kg), and enrofloxacin (30 mg/kg) compounded into a single capsule administered once a day in food. After 3 mo of therapy, MDCT imaging documented a decrease in nodule size and number in all remaining birds, with further improvement documented after 13 mo of treatment. MDCT imaging was invaluable for diagnosing disease, documenting disease progression over time, and assessing response to therapy. Early initiation of therapy before the development of outward signs of disease led to resolution of mycobacterial pulmonary lesions in multiple penguins. Mycobacterial disease in this group of little penguins, as well as previously published reports, suggests that the species is at increased risk for developing mycobacteriosis.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bird Diseases/microbiology , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/veterinary , Spheniscidae , Animals , Animals, Zoo , Bird Diseases/drug therapy , Female , Male , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Mycobacterium avium-intracellulare Infection/mortality
10.
BMC Vet Res ; 13(1): 164, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28592322

ABSTRACT

BACKGROUND: Bovine tuberculosis (TB) control programs generally rely on the tuberculin skin test (TST) for ante-mortem detection of Mycobacterium bovis-infected cattle. RESULTS: Present findings demonstrate that a rapid antibody test based on Dual-Path Platform (DPP®) technology, when applied 1-3 weeks after TST, detected 9 of 11 and 34 of 52 TST non-reactive yet M. bovis-infected cattle from the US and GB, respectively. The specificity of the assay ranged from 98.9% (n = 92, US) to 96.0% (n = 50, GB) with samples from TB-free herds. Multi-antigen print immunoassay (MAPIA) revealed the presence of antibodies to multiple antigens of M. bovis in sera from TST non-reactors diagnosed with TB. CONCLUSIONS: Thus, use of serologic assays in series with TST can identify a significant number of TST non-reactive tuberculous cattle for more efficient removal from TB-affected herds.


Subject(s)
Antibodies, Bacterial/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Tuberculosis, Bovine/diagnosis , Animals , Cattle , Enzyme-Linked Immunosorbent Assay/methods , Female , Immunoglobulin G/immunology , Male , Mycobacterium bovis/immunology , Time Factors , Tuberculin Test/veterinary
11.
Emerg Infect Dis ; 22(1): 79-82, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26689610

ABSTRACT

Brucella suis infection was diagnosed in a man from Tonga, Polynesia, who had butchered swine in Oregon, USA. Although the US commercial swine herd is designated brucellosis-free, exposure history suggested infection from commercial pigs. We used whole-genome sequencing to determine that the man was infected in Tonga, averting a field investigation.


Subject(s)
Brucella suis/genetics , Brucellosis/microbiology , Animals , Brucellosis/veterinary , Humans , Male , Oregon , Swine/microbiology , Tonga
12.
MMWR Morb Mortal Wkly Rep ; 65(8): 197-201, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26938831

ABSTRACT

Mycobacterium bovis, one of several mycobacteria of the M. tuberculosis complex, is a global zoonotic pathogen that primarily infects cattle. Humans become infected by consuming unpasteurized dairy products from infected cows; possible person-to-person airborne transmission has also been reported. In April 2014, a man in Nebraska who was born in Mexico was determined to have extensive pulmonary tuberculosis (TB) caused by M. bovis after experiencing approximately 3 months of cough and fever. Four months later, a U.S.-born Hispanic girl from a nearby town who had been ill for 4-5 months was also determined to have pulmonary TB caused by M. bovis. The only social connection between the two patients was attendance at the same church, and no common dietary exposure was identified. Both patients had pulmonary cavities on radiography and acid-fast bacilli (AFB) on sputum-smear microscopy, indicators of being contagious. Whole-genome sequencing results of the isolates were nearly indistinguishable. Initial examination of 181 contacts determined that 39 (22%) had latent infection: 10 (42%) of 24 who had close exposure to either patient, 28 (28%) of 100 who were exposed to one or both patients in church, and one (2%) of 57 exposed to the second patient at a school. Latent infection was diagnosed in six contacts on follow-up examination, 2 months after an initial negative test result, for an overall latent infection rate of 25%. No infected contacts recalled consuming unpasteurized dairy products, and none had active TB disease at the initial or secondary examination. Persons who have M. bovis TB should be asked about consumption of unpasteurized dairy products, and contact investigations should follow the same guidance as for M. tuberculosis TB.


Subject(s)
Air Microbiology , Mycobacterium bovis , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/transmission , Adolescent , Adult , Contact Tracing , Dairy Products/microbiology , Female , Food Microbiology , Humans , Male , Mexico/ethnology , Nebraska , Tuberculosis, Pulmonary/microbiology
13.
Emerg Infect Dis ; 21(3): 480-3, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25695666

ABSTRACT

Mycobacterium bovis infection of cats is exceedingly rare in regions where bovine tuberculosis is not endemic. We describe the diagnosis and clinical management of pulmonary M. bovis infection in 2 indoor-housed cats and their association with at least 1 M. bovis-infected human in Texas, USA, in September 2012.


Subject(s)
Cat Diseases/diagnosis , Cat Diseases/microbiology , Mycobacterium bovis/genetics , Tuberculosis/veterinary , Animals , Antitubercular Agents/therapeutic use , Cat Diseases/drug therapy , Cats , Cattle , Female , Humans , Mycobacterium bovis/classification , Radiography, Thoracic , Serotyping , Texas , Treatment Outcome , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology
16.
Front Vet Sci ; 11: 1304022, 2024.
Article in English | MEDLINE | ID: mdl-38515532

ABSTRACT

There is a critical need for an inactivation method that completely inactivates pathogens at the time of sample collection while maintaining the nucleic acid quality required for diagnostic PCR testing. This inactivation method is required to alleviate concerns about transmission potential, minimize shipping complications and cost, and enable testing in lower containment laboratories, thereby enhancing disease diagnostics through improved turn-around time. This study evaluated a panel of 10 surrogate viruses that represent highly pathogenic animal diseases. These results showed that a commercial PrimeStore® molecular transport media (PSMTM) completely inactivated all viruses tested by >99.99%, as determined by infectivity and serial passage assays. However, the detection of viral nucleic acid by qRT-PCR was comparable in PSMTM and control-treated conditions. These results were consistent when viruses were evaluated in the presence of biological material such as sera and cloacal swabs to mimic diagnostic sample conditions for non-avian and avian viruses, respectively. The results of this study may be utilized by diagnostic testing laboratories for highly pathogenic agents affecting animal and human populations. These results may be used to revise guidance for select agent diagnostic testing and the shipment of infectious substances.

17.
Prev Vet Med ; 223: 106114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198901

ABSTRACT

Infection with the bacterium Coxiella burnetii can cause coxiellosis in animals and Q fever in humans. Coxiellosis a consistently underreported infectious disease. The infection can result in reproductive consequences for humans and animals. Ruminants are a reservoir for infection and humans are generally infected via aerosolized secretions, making it a public health concern. Studies of ruminant seroprevalence are generally limited in size and scope. This study determined seroprevalence in a large-scale U.S. population of female goats using serum samples from 7736 does from 24 states. This study identified C. burnetii seroprevalence in the United States domestic goat population. Overall, 14.5 % (SE = 2.3) of does were seropositive and 21.0 % (SE = 2.4) of operations had at least 1 seropositive doe. Further, operation demographics and herd management practices associated with seropositivity were as follows: the suspected or confirmed presence of caprine arthritis encephalitis (CAE), caseous lymphadenitis (CL), Johne's disease, or sore mouth in the herd in the previous 3 years, not cleaning or disinfecting the kidding areas or removing aborting does from other does, allowing visitors to access the kidding areas, and a lower percentage of adult goat inventory that were adult bucks or wethers. Furthermore, goat breed was associated with seropositivity. These data show C. burnetii seroprevalence in the United States and identify operation and animal characteristics and management practices associated with C. burnetii seropositivity. Together, this information can be used to help limit animal transmission, inform public health measures, and help educate and protect individuals working with goats.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Sheep Diseases , Humans , Animals , Male , Female , United States/epidemiology , Sheep , Goats , Seroepidemiologic Studies , Prevalence , Goat Diseases/epidemiology , Goat Diseases/microbiology , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Ruminants , Risk Factors , Sheep Diseases/epidemiology
18.
J Wildl Dis ; 60(2): 327-338, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38385992

ABSTRACT

Products of parturition are the predominant source of Brucella abortus for transmission in bison (Bison bison). Our objective was to assess whether preventing pregnancy in Brucella-seropositive bison reduced B. abortus shedding. Brucella-seropositive and -seronegative bison from Yellowstone National Park, Wyoming, USA were used in a replicated experiment. Each of two replicates (rep1, rep2) included a group of seropositive females treated with a single dose of gonadotropin-releasing hormone-based immunocontraceptive (Treatment rep1, n=15; Treatment rep2, n=20) and an untreated group (Control rep1, n=14; Control rep2, n=16) housed separately. Seronegative sentinel females were placed in each group to monitor horizontal transmission. Seronegative males were co-mingled for breeding each year. Pregnant females were removed from treatment groups in the first year, but not thereafter. Each January-June we monitored for B. abortus shedding events-any parturition associated with culture-positive fluids or tissues. We analyzed probability of shedding events using a negative binomial generalized linear mixed model fit by maximum likelihood using Laplace approximation. Over 5 yr, we observed zero shedding events in Treatment rep1 vs. 12 in Control rep1. All five Control rep1 sentinels but zero (0/5) Treatment rep1 sentinels seroconverted. In the second replicate, Treatment rep2 had two shedding events over 3 yr and Control rep2 had five events over 2 yr. Sentinels in both Control rep2 (3/6) and Treatment rep2 (5/6) seroconverted by trial endpoint. Treatment rep1 showed a reduced shedding probability relative to Control rep1, Treatment rep2, and Control rep2 (log odds value -25.36 vs. -1.71, -1.39, and -0.23, respectively). Fixed effect predictor covariates, year and age, had no explanatory value. These data suggest that successful contraception of brucellosis-seropositive female bison prevents shedding of B. abortus by individual animals. However, contraceptive treatment may or may not sufficiently reduce disease transmission to reduce brucellosis prevalence in an affected herd.


Subject(s)
Bison , Brucellosis , Animals , Female , Pregnancy , Brucella abortus , Brucellosis/epidemiology , Brucellosis/prevention & control , Brucellosis/veterinary , Wyoming
19.
Emerg Infect Dis ; 19(12): 1992-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24274092

ABSTRACT

Bovine brucellosis has been nearly eliminated from livestock in the United States. Bison and elk in the Greater Yellowstone Area remain reservoirs for the disease. During 1990-2002, no known cases occurred in Greater Yellowstone Area livestock. Since then, 17 transmission events from wildlife to livestock have been investigated.


Subject(s)
Bison/microbiology , Brucellosis, Bovine/transmission , Animals , Brucella abortus/classification , Brucella abortus/genetics , Brucella abortus/isolation & purification , Brucellosis, Bovine/history , Cattle , DNA, Bacterial , History, 21st Century , Minisatellite Repeats , Phylogeny , United States/epidemiology , Zoonoses/history , Zoonoses/transmission
20.
BMC Vet Res ; 9: 74, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23578209

ABSTRACT

BACKGROUND: Bacteriologic culture remains one of the most important methods to diagnose bovine tuberculosis despite the lengthy incubation time, significant decontamination and media expense, and high biocontainment requirements. Media selection is an important determination of culture sensitivity, and the planned discontinuation of the BACTEC 460 TB culture system has challenged veterinary diagnostic laboratories to evaluate alternatives. At the National Veterinary Services Laboratories the BACTEC MGIT 960 and 4 solid media formulations were compared with the BACTEC 460 TB system on 6,795 veterinary diagnostic specimens submitted for Mycobacterium bovis culture. RESULTS: M. bovis was isolated from 2.6% of the samples and atypical mycobacteria from 4.4% of the samples. The BACTEC 12B media isolated significantly more M. bovis (93.1% of positive samples) than MGIT 960 media (81.9%). However, contamination rates were much higher for the MGIT media, 17-24%, compared to 7% for BACTEC, suggesting that contamination was a major cause of MGIT reduced sensitivity. Time to signal positive was 2.37 weeks (95% CI 2.24-2.5) for the MGIT, and 3.2 weeks (95% CI 3.07-3.3) for the BACTEC, both earlier than any solid media. Mycobactosel LJ failed to isolate M. bovis from primary culture. An in-house 7H11 media supplemented with calf sera, hemolyzed blood, malachite green and pyruvate recovered more M. bovis (80.6%) with the least amount of contamination of any other solid media evaluated. CONCLUSION: Decontamination methods may have to be optimized and or MGIT media may have to be altered to reduce contamination in veterinary samples. Despite these issues, the MGIT 960 system is still favored over the use of solid media due to decreased time to recovery and the potential for higher sensitivity.


Subject(s)
Mycobacterium bovis/isolation & purification , Reagent Kits, Diagnostic/veterinary , Tuberculosis, Bovine/diagnosis , Animals , Cattle , Culture Media , Histocytochemistry/veterinary , Prospective Studies , Tuberculosis, Bovine/pathology , United States
SELECTION OF CITATIONS
SEARCH DETAIL