Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Hum Reprod ; 33(5): 967-977, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29618007

ABSTRACT

STUDY QUESTION: Can subphenotype analysis of genome-wide association study (GWAS) data from subjects with testicular germ cell tumor (TGCT) provide insight into cryptorchidism (undescended testis, UDT) susceptibility? SUMMARY ANSWER: Suggestive intragenic GWAS signals common to UDT, TGCT case-case and TGCT case-control analyses occur in genes encoding RBFOX RNA-binding proteins (RBPs) and their neurodevelopmental targets. WHAT IS KNOWN ALREADY: UDT is a strong risk factor for TGCT, but while genetic risk factors for TGCT are well-known, genetic susceptibility to UDT is poorly understood and appears to be more complex. STUDY DESIGN, SIZE, DURATION: We performed a secondary subphenotype analysis of existing GWAS data from the Testicular Cancer Consortium (TECAC) and compared these results with our previously published UDT GWAS data, and with data previously acquired from studies of the fetal rat gubernaculum. PARTICIPANTS/MATERIALS, SETTING, METHODS: Studies from the National Cancer Institute (NCI), United Kingdom (UK) and University of Pennsylvania (Penn) that enrolled white subjects were the source of the TGCT GWAS data. We completed UDT subphenotype case-case (TGCT/UDT vs TGCT/non-UDT) and case-control (TGCT/UDT vs control), collectively referred to as 'TECAC' analyses, followed by a meta-analysis comprising 129 TGCT/UDT cases, 1771 TGCT/non-UDT cases, and 3967 unaffected controls. We reanalyzed our UDT GWAS results comprising 844 cases and 2718 controls by mapping suggestive UDT and TECAC signals (defined as P < 0.001) to genes using Ingenuity Pathway Analysis (IPA®). We compared associated pathways and enriched gene categories common to all analyses after Benjamini-Hochberg multiple testing correction, and analyzed transcript levels and protein expression using qRT-PCR and rat fetal gubernaculum confocal imaging, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: We found suggestive signals within 19 genes common to all three analyses, including RBFOX1 and RBFOX3, neurodevelopmental paralogs that encode RBPs targeting (U)GCATG-containing transcripts. Ten of the 19 genes participate in neurodevelopment and/or contribute to risk of neurodevelopmental disorders. Experimentally predicted RBFOX gene targets were strongly overrepresented among suggestive intragenic signals for the UDT (117 of 628 (19%), P = 3.5 × 10-24), TECAC case-case (129 of 711 (18%), P = 2.5 × 10-27) and TECAC case-control (117 of 679 (17%), P = 2 × 10-21) analyses, and a majority of the genes common to all three analyses (12 of 19 (63%), P = 3 × 10-9) are predicted RBFOX targets. Rbfox1, Rbfox2 and their encoded proteins are expressed in the rat fetal gubernaculum. Predicted RBFOX targets are also enriched among transcripts differentially regulated in the fetal gubernaculum during normal development (P = 3 × 10-31), in response to in vitro hormonal stimulation (P = 5 × 10-45) and in the cryptorchid LE/orl rat (P = 2 × 10-42). LARGE SCALE DATA: GWAS data included in this study are available in the database of Genotypes and Phenotypes (dbGaP accession numbers phs000986.v1.p1 and phs001349.v1p1). LIMITATIONS, REASONS FOR CAUTION: These GWAS data did not reach genome-wide significance for any individual analysis. UDT appears to have a complex etiology that also includes environmental factors, and such complexity may require much larger sample sizes than are currently available. The current methodology may also introduce bias that favors false discovery of larger genes. WIDER IMPLICATIONS OF THE FINDINGS: Common suggestive intragenic GWAS signals suggest that RBFOX paralogs and other neurodevelopmental genes are potential UDT risk candidates, and potential TGCT susceptibility modifiers. Enrichment of predicted RBFOX targets among differentially expressed transcripts in the fetal gubernaculum additionally suggests a role for this RBP family in regulation of testicular descent. As RBFOX proteins regulate alternative splicing of Calca to generate calcitonin gene-related peptide, a protein linked to development and function of the gubernaculum, additional studies that address the role of these proteins in UDT are warranted. STUDY FUNDING/COMPETING INTEREST(S): The Eunice Kennedy Shriver National Institute for Child Health and Human Development (R01HD060769); National Center for Research Resources (P20RR20173), National Institute of General Medical Sciences (P20GM103464), Nemours Biomedical Research, the Testicular Cancer Consortium (U01CA164947), the Intramural Research Program of the NCI, a support services contract HHSN26120130003C with IMS, Inc., the Abramson Cancer Center at Penn, National Cancer Institute (CA114478), the Institute of Cancer Research, UK and the Wellcome Trust Case-Control Consortium (WTCCC) 2. None of the authors reports a conflict of interest.


Subject(s)
Antigens, Nuclear/genetics , Cryptorchidism/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , RNA Splicing Factors/genetics , Repressor Proteins/genetics , Testicular Neoplasms/genetics , Alleles , Case-Control Studies , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Male
2.
Mol Hum Reprod ; 22(1): 18-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26502805

ABSTRACT

STUDY HYPOTHESIS: Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. STUDY FINDING: Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. WHAT IS KNOWN ALREADY: Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl:SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F2 males used for genotyping and/or linkage analysis. At least five fetuses per gestational time point from two or more litters were used for quantitative real-time RT-PCR (qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. MAIN RESULTS AND THE ROLE OF CHANCE: LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared with Crl:LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl:LE and Crl:SD strains for alleles within two of the most significant (P < 0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. LIMITATIONS, REASONS FOR CAUTION: The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. WIDER IMPLICATIONS OF THE FINDINGS: Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism. LARGE SCALE DATA: Sequences were deposited in the Rat Genome Database (RGD, http://rgd.mcw.edu/). STUDY FUNDING AND COMPETING INTERESTS: This work was supported by: R01HD060769 from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD), 2P20GM103446 and P20GM103464 from the National Institute of General Medical Sciences (NIGMS), and Nemours Biomedical Research. The authors have no competing interests to declare.


Subject(s)
Cryptorchidism/veterinary , Multifactorial Inheritance , Rats, Long-Evans/genetics , Rodent Diseases/genetics , Alleles , Androgens/physiology , Animals , Cryptorchidism/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Fertility/genetics , Gene Expression Regulation, Developmental , Genetic Association Studies , Genetic Linkage , Genetic Predisposition to Disease , Infertility, Male/genetics , Infertility, Male/veterinary , Leydig Cells/metabolism , Male , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/physiology , Rats , Rats, Inbred WKY , Rats, Mutant Strains , Real-Time Polymerase Chain Reaction , Testis/embryology
3.
J Urol ; 196(1): 270-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26748163

ABSTRACT

PURPOSE: Gubernaculum-cremaster complex development is hormonally regulated and abnormal in a cryptorchid rat model. Using cell tracking techniques and imaging we studied myogenic phenotypes and fates in the fetal rat gubernaculum-cremaster complex. MATERIALS AND METHODS: Embryonic day 17 gubernaculum-cremaster complexes were labeled with CellTracker™ or the DNA synthesis marker EdU (5-ethynyl-2'-deoxyuridine), or immobilized in Matrigel® and grown in culture. Embryonic day 17 to 21 gubernaculum-cremaster complex sections and cells were imaged using wide field and deconvolution immunofluorescence microscopy, and muscle and/or myofibroblast specific antibodies. Deconvolved image stacks were used to create a 3-dimensional model of embryonic day 21 gubernaculum-cremaster complex muscle. RESULTS: PAX7 (paired box 7) positive and myogenin positive muscle precursors were visible in a desmin-rich myogenic zone between muscle layers that elongated and became thicker during development. Gubernaculum-cremaster complex inner mesenchymal cells expressed desmin and αSMA (α smooth muscle actin) at lower levels than in the myogenic zone. After pulse labeling with CellTracker or EdU mesenchymal cells became incorporated into differentiated muscle. Conversely, mesenchymal cells migrated beyond Matrigel immobilized gubernaculum-cremaster complexes, expressed PAX7 and fused to form striated myotubes. Mesenchymal gubernaculum-cremaster complex cell lines proliferated more than 40 passages and showed contractile behavior but did not form striated muscle. Our 3-dimensional gubernaculum-cremaster complex model had 2 orthogonal ventral layers and an arcing inner layer of muscle. CONCLUSIONS: Our data suggest that mesenchymal cells in the peripheral myogenic zone of the fetal gubernaculum-cremaster complex contribute to formation of a distinctively patterned cremaster muscle. Nonmyogenic, desmin and αSMA positive gubernaculum-cremaster complex mesenchymal cells proliferate and have a myofibroblast-like phenotype in culture. Intrinsic mechanical properties of these divergent cell types may facilitate perinatal inversion of the gubernaculum-cremaster complex.


Subject(s)
Abdominal Muscles/embryology , Cell Differentiation/physiology , Gubernaculum/embryology , Mesenchymal Stem Cells/physiology , Muscle Development/physiology , Myofibroblasts/physiology , Phenotype , Abdominal Muscles/cytology , Animals , Cell Line , Gubernaculum/cytology , Rats , Rats, Long-Evans
4.
J Urol ; 193(5): 1637-45, 2015 May.
Article in English | MEDLINE | ID: mdl-25390077

ABSTRACT

PURPOSE: Based on a genome-wide association study of testicular dysgenesis syndrome showing a possible association with TGFBR3, we analyzed data from a larger, phenotypically restricted cryptorchidism population for potential replication of this signal. MATERIALS AND METHODS: We excluded samples based on strict quality control criteria, leaving 844 cases and 2,718 controls of European ancestry that were analyzed in 2 separate groups based on genotyping platform (ie Illumina® HumanHap550, version 1 or 3, or Human610-Quad, version 1 BeadChip in group 1 and Human OmniExpress 12, version 1 BeadChip platform in group 2). Analyses included genotype imputation at the TGFBR3 locus, association analysis of imputed data with correction for population substructure, subsequent meta-analysis of data for groups 1 and 2, and selective genotyping of independent cases (330) and controls (324) for replication. We also measured Tgfbr3 mRNA levels and performed TGFBR3/betaglycan immunostaining in rat fetal gubernaculum. RESULTS: We identified suggestive (p ≤ 1× 10(-4)) association of markers in/near TGFBR3, including rs9661103 (OR 1.40; 95% CI 1.20, 1.64; p = 2.71 × 10(-5)) and rs10782968 (OR 1.58; 95% CI 1.26, 1.98; p = 9.36 × 10(-5)) in groups 1 and 2, respectively. In subgroup analyses we observed strongest association of rs17576372 (OR 1.42; 95% CI 1.24, 1.60; p = 1.67 × 10(-4)) with proximal and rs11165059 (OR 1.32; 95% CI 1.15, 1.38; p = 9.42 × 10(-4)) with distal testis position, signals in strong linkage disequilibrium with rs9661103 and rs10782968, respectively. Association of the prior genome-wide association study signal (rs12082710) was marginal (OR 1.13; 95% CI 0.99, 1.28; p = 0.09 for group 1), and we were unable to replicate signals in our independent cohort. Tgfbr3/betaglycan was differentially expressed in wild-type and cryptorchid rat fetal gubernaculum. CONCLUSIONS: These data suggest complex or phenotype specific association of cryptorchidism with TGFBR3 and the gubernaculum as a potential target of TGFß signaling.


Subject(s)
Cryptorchidism/genetics , Proteoglycans/genetics , Receptors, Transforming Growth Factor beta/genetics , Child , Child, Preschool , Humans , Infant , Male , Phenotype
5.
Biol Reprod ; 83(5): 774-82, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20631401

ABSTRACT

Insulin-like 3 (INSL3) signaling directs fetal gubernacular development and testis descent, but the actions of INSL3 in the gubernaculum are poorly understood. Using microarray gene expression profiling of fetal male rat gubernaculum explants exposed to 10 or 100 nM INSL3, significant changes in expression were identified for approximately 900 genes. Several of the genes showing the largest inductions regulate neuronal development or activity, including Pnoc (34-fold), Nptx2 (9-fold), Nfasc (4-fold), Gfra3 (3-fold), Unc5d (3-fold), and Crlf1 (3-fold). Bioinformatics analysis revealed BMP and WNT signaling pathways and several gene ontologies related to neurogenesis were altered by INSL3. Promoter response elements significantly enriched in the INSL3-regulated gene list included consensus sequences for MYB, REL, ATF2, and TEF transcription factors. Comparing in vivo gene expression profiles of male and female rat fetal gubernaculum showed expression of the Bmp, Wnt, and neurodevelopmental genes induced by INSL3 was higher in males. Using quantitative RT-PCR, the microarray data were confirmed, and the induction of Bmp3, Chrdl2, Crlf1, Nptx2, Pnoc, Wnt4, and Wnt5a mRNA levels were examined over a range of INSL3 concentrations (0.1-100 nM) in male and female gubernaculum. In both sexes, an increasing gene expression response was observed between 0.1 and 10 nM INSL3. These data suggest that INSL3 signaling in the fetal gubernaculum induces morphogenetic programs, including BMP and WNT signaling, and support other rodent data suggesting a role for these pathways in development of the gubernaculum.


Subject(s)
Gene Expression Regulation, Developmental , Genitalia, Male/embryology , Genitalia, Male/metabolism , Insulin/physiology , Neural Pathways/physiology , Neurogenesis/genetics , Proteins/physiology , Testis/embryology , Animals , Embryo, Mammalian , Female , Fetal Development/genetics , Gene Expression Profiling , Genitalia, Female/embryology , Genitalia, Female/metabolism , Male , Oligonucleotide Array Sequence Analysis , Osmolar Concentration , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Long-Evans , Reverse Transcriptase Polymerase Chain Reaction , Sex Characteristics , Tissue Culture Techniques
6.
Article in English | MEDLINE | ID: mdl-30568634

ABSTRACT

Background: The process of testicular descent requires androgen and insulin-like 3, hormones secreted by fetal Leydig cells. Knowledge concerning distinct and common functions of these hormones in regulating development of the fetal gubernaculum remains limited and/or conflicting. The current studies were designed to better define characteristics of androgen receptor (AR) expression, function and regulation, as well as the biomechanical properties of normal and cryptorchid gubernaculum during fetal development. Methods: We studied fetal gubernacula from Long Evans outbred (LE/wt) rats and an inbred (LE/orl) strain with an inherited form of cryptorchidism associated with an AR signaling defect. Gubernacular cells or whole organs obtained from LE/wt and LE/orl fetal gubernacula underwent AR immunostaining and quantitative image analysis. The effects of dihydrotestosterone (DHT) on AR expression, muscle fiber morphology, hyaluronan (HA) levels and glycosaminoglycan (GAG) content were measured in LE/wt gubernacula. Finally, the spatial mechanics of freshly harvested LE/wt and LE/orl fetal gubernacula were compared using micropipette aspiration. Results: AR is expressed in the nucleus of mesenchymal core, tip and cord cells of the embryonic (E) day 17 and 21 fetal gubernaculum, and is enhanced by DHT in primary cultures of gubernacular mesenchymal cells. Enhanced AR expression at the tip was observed in LE/wt but not LE/orl gubernacula. In in vitro studies of whole mount fetal gubernaculum, DHT did not alter muscle fiber morphology, HA content or GAG production. Progressive swelling with reduced cellular density of the LE/wt gubernaculum at E19-21 was associated with increased central stiffness in LE/wt but not in LE/orl fetuses. Conclusions: These data confirm nuclear AR expression in gubernacular mesenchyme with distal enhancement at the tip/cord region in LE/wt but not LE/orl rat fetuses. DHT enhanced cellular AR expression but had no major effects on muscle morphology or matrix composition in the rat fetal gubernaculum in vitro. Regional increased stiffness and decreased cell density between E19 and E21 were observed in LE/wt but not LE/orl fetal gubernacula. Developmental differences in cell-specific AR expression in LE/orl fetal gubernacula may contribute to the dysmorphism and aberrant function that underlies cryptorchidism susceptibility in this strain.

SELECTION OF CITATIONS
SEARCH DETAIL