Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 575
Filter
Add more filters

Publication year range
1.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34537136

ABSTRACT

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Subject(s)
COVID-19/epidemiology , Evolution, Molecular , Mutation , Pandemics , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Codon/genetics , Genes, Viral , Genetic Drift , Host Adaptation/genetics , Humans , Immune Evasion , Phylogeny , Public Health
2.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34499854

ABSTRACT

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Pandemics , Recombination, Genetic , SARS-CoV-2/genetics , Base Sequence/genetics , COVID-19/virology , Computational Biology/methods , Gene Frequency , Genome, Viral , Genotype , Humans , Mutation , Phylogeny , Polymorphism, Single Nucleotide , United Kingdom/epidemiology , Whole Genome Sequencing/methods
3.
Cell ; 184(19): 4848-4856, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34480864

ABSTRACT

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Animals , Biological Evolution , COVID-19/virology , Humans , Laboratories , SARS-CoV-2/genetics , Zoonoses/virology
4.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33275900

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Aspartic Acid/analysis , Aspartic Acid/genetics , COVID-19/epidemiology , Genome, Viral , Glycine/analysis , Glycine/genetics , Humans , Mutation , SARS-CoV-2/growth & development , United Kingdom/epidemiology , Virulence , Whole Genome Sequencing
5.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: mdl-36996873

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
6.
Mol Cell ; 73(3): 413-428.e7, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30598363

ABSTRACT

Receptor-interacting protein kinase (RIPK) 1 functions as a key mediator of tissue homeostasis via formation of Caspase-8 activating ripoptosome complexes, positively and negatively regulating apoptosis, necroptosis, and inflammation. Here, we report an unanticipated cell-death- and inflammation-independent function of RIPK1 and Caspase-8, promoting faithful chromosome alignment in mitosis and thereby ensuring genome stability. We find that ripoptosome complexes progressively form as cells enter mitosis, peaking at metaphase and disassembling as cells exit mitosis. Genetic deletion and mitosis-specific inhibition of Ripk1 or Caspase-8 results in chromosome alignment defects independently of MLKL. We found that Polo-like kinase 1 (PLK1) is recruited into mitotic ripoptosomes, where PLK1's activity is controlled via RIPK1-dependent recruitment and Caspase-8-mediated cleavage. A fine balance of ripoptosome assembly is required as deregulated ripoptosome activity modulates PLK1-dependent phosphorylation of downstream effectors, such as BUBR1. Our data suggest that ripoptosome-mediated regulation of PLK1 contributes to faithful chromosome segregation during mitosis.


Subject(s)
Caspase 8/metabolism , Chromosomal Instability , Colonic Neoplasms/enzymology , Fibroblasts/enzymology , Mitosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Aneuploidy , Animals , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Fibroblasts/pathology , HT29 Cells , Humans , Inflammation/enzymology , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction , Polo-Like Kinase 1
7.
PLoS Biol ; 21(2): e3001922, 2023 02.
Article in English | MEDLINE | ID: mdl-36780432

ABSTRACT

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Subject(s)
Bacteriophages , Viruses , Humans , Metagenomics , Phylogeny , Viruses/genetics
8.
PLoS Comput Biol ; 20(1): e1011795, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38271457

ABSTRACT

The COVID-19 pandemic has been characterised by sequential variant-specific waves shaped by viral, individual human and population factors. SARS-CoV-2 variants are defined by their unique combinations of mutations and there has been a clear adaptation to more efficient human infection since the emergence of this new human coronavirus in late 2019. Here, we use machine learning models to identify shared signatures, i.e., common underlying mutational processes and link these to the subset of mutations that define the variants of concern (VOCs). First, we examined the global SARS-CoV-2 genomes and associated metadata to determine how viral properties and public health measures have influenced the magnitude of waves, as measured by the number of infection cases, in different geographic locations using regression models. This analysis showed that, as expected, both public health measures and virus properties were associated with the waves of regional SARS-CoV-2 reported infection numbers and this impact varies geographically. We attribute this to intrinsic differences such as vaccine coverage, testing and sequencing capacity and the effectiveness of government stringency. To assess underlying evolutionary change, we used non-negative matrix factorisation and observed three distinct mutational signatures, unique in their substitution patterns and exposures from the SARS-CoV-2 genomes. Signatures 1, 2 and 3 were biased to C→T, T→C/A→G and G→T point mutations. We hypothesise assignments of these mutational signatures to the host antiviral molecules APOBEC, ADAR and ROS respectively. We observe a shift amidst the pandemic in relative mutational signature activity from predominantly Signature 1 changes to an increasingly high proportion of changes consistent with Signature 2. This could represent changes in how the virus and the host immune response interact and indicates how SARS-CoV-2 may continue to generate variation in the future. Linkage of the detected mutational signatures to the VOC-defining amino acids substitutions indicates the majority of SARS-CoV-2's evolutionary capacity is likely to be associated with the action of host antiviral molecules rather than virus replication errors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Pandemics , Mutation , Antiviral Agents/pharmacology
9.
BMC Bioinformatics ; 25(1): 125, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519883

ABSTRACT

In the battle of the host against lentiviral pathogenesis, the immune response is crucial. However, several questions remain unanswered about the interaction with different viruses and their influence on disease progression. The simian immunodeficiency virus (SIV) infecting nonhuman primates (NHP) is widely used as a model for the study of the human immunodeficiency virus (HIV) both because they are evolutionarily linked and because they share physiological and anatomical similarities that are largely explored to understand the disease progression. The HIHISIV database was developed to support researchers to integrate and evaluate the large number of transcriptional data associated with the presence/absence of the pathogen (SIV or HIV) and the host response (NHP and human). The datasets are composed of microarray and RNA-Seq gene expression data that were selected, curated, analyzed, enriched, and stored in a relational database. Six query templates comprise the main data analysis functions and the resulting information can be downloaded. The HIHISIV database, available at  https://hihisiv.github.io , provides accurate resources for browsing and visualizing results and for more robust analyses of pre-existing data in transcriptome repositories.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Simian Immunodeficiency Virus/genetics , HIV , Simian Acquired Immunodeficiency Syndrome/genetics , Disease Progression , Immunity , Gene Expression
10.
Ecol Lett ; 27(6): e14464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923281

ABSTRACT

Microbiomes are ecosystems, and their stability can impact the health of their hosts. Theory predicts that predators influence ecosystem stability. Phages are key predators of bacteria in microbiomes, but phages are unusual predators because many have lysogenic life cycles. It has been hypothesized that lysogeny can destabilize microbiomes, but lysogeny has no direct analog in classical ecological theory, and no formal theory exists. We studied the stability of computationally simulated microbiomes with different numbers of temperate (lysogenic) and virulent (obligate lytic) phage species. Bacterial populations were more likely to fluctuate over time when there were more temperate phages species. After disturbances, bacterial populations returned to their pre-disturbance densities more slowly when there were more temperate phage species, but cycles engendered by disturbances dampened more slowly when there were more virulent phage species. Our work offers the first formal theory linking lysogeny to microbiome stability.


Subject(s)
Bacteriophages , Lysogeny , Microbiota , Bacteriophages/physiology , Computer Simulation , Bacteria/virology , Models, Biological
11.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36326442

ABSTRACT

MOTIVATION: While classical approaches for controlling the false discovery rate (FDR) of RNA sequencing (RNAseq) experiments have been well described, modern research workflows and growing databases enable a new paradigm of controlling the FDR globally across RNAseq experiments in the past, present and future. The simplest analysis strategy that analyses each RNAseq experiment separately and applies an FDR correction method can lead to inflation of the overall FDR. We propose applying recently developed methodology for online multiple hypothesis testing to control the global FDR in a principled way across multiple RNAseq experiments. RESULTS: We show that repeated application of classical repeated offline approaches has variable control of global FDR of RNAseq experiments over time. We demonstrate that the online FDR algorithms are a principled way to control FDR. Furthermore, in certain simulation scenarios, we observe empirically that online approaches have comparable power to repeated offline approaches. AVAILABILITY AND IMPLEMENTATION: The onlineFDR package is freely available at http://www.bioconductor.org/packages/onlineFDR. Additional code used for the simulation studies can be found at https://github.com/latlio/onlinefdr_rnaseq_simulation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , Computer Simulation , Sequence Analysis, RNA/methods , Base Sequence
12.
PLoS Pathog ; 18(11): e1010973, 2022 11.
Article in English | MEDLINE | ID: mdl-36399512

ABSTRACT

HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced 'antiviral state', we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be.


Subject(s)
Dermatitis , HIV Seropositivity , HIV-1 , Humans , Interferons/pharmacology , Antiviral Agents , DNA Replication
13.
PLoS Biol ; 19(3): e3001115, 2021 03.
Article in English | MEDLINE | ID: mdl-33711012

ABSTRACT

Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses. In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered "facilitating" intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human-human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus.


Subject(s)
COVID-19/virology , Chiroptera/virology , SARS-CoV-2/genetics , Viral Zoonoses/virology , Animals , COVID-19/epidemiology , COVID-19/transmission , Evolution, Molecular , Genome, Viral , Host Specificity , Humans , Pandemics , Phylogeny , Receptors, Virus/genetics , SARS-CoV-2/pathogenicity , Selection, Genetic , Viral Zoonoses/genetics , Viral Zoonoses/transmission
14.
PLoS Biol ; 19(9): e3001352, 2021 09.
Article in English | MEDLINE | ID: mdl-34491982

ABSTRACT

Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.


Subject(s)
Dinucleoside Phosphates , Interferon Regulatory Factors/genetics , RNA, Viral , RNA-Binding Proteins/metabolism , A549 Cells , Cell Line , Humans , Interferon-beta/pharmacology , RNA, Messenger , RNA-Binding Proteins/genetics , Virus Physiological Phenomena , Viruses
15.
EMBO Rep ; 23(10): e54322, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35999696

ABSTRACT

The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Stat Med ; 43(11): 2239-2262, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38545961

ABSTRACT

A coordinated testing policy is an essential tool for responding to emerging epidemics, as was seen with COVID-19. However, it is very difficult to agree on the best policy when there are multiple conflicting objectives. A key objective is minimizing cost, which is why pooled testing (a method that involves pooling samples taken from multiple individuals and analyzing this with a single diagnostic test) has been suggested. In this article, we present results from an extensive and realistic simulation study comparing testing policies based on individually testing subjects with symptoms (a policy resembling the UK strategy at the start of the COVID-19 pandemic), individually testing subjects at random or pools of subjects randomly combined and tested. To compare these testing methods, a dynamic model compromised of a relationship network and an extended SEIR model is used. In contrast to most existing literature, testing capacity is considered as fixed and limited rather than unbounded. This article then explores the impact of the proportion of symptomatic infections on the expected performance of testing policies. Symptomatic testing performs better than pooled testing unless a low proportion of infections are symptomatic. Additionally, we include the novel feature for testing of non-compliance and perform a sensitivity analysis for different compliance assumptions. Our results suggest for the pooled testing scheme to be superior to testing symptomatic people individually, only a small proportion of the population ( > 10 % $$ >10\% $$ ) needs to not comply with the testing procedure.


Subject(s)
COVID-19 Testing , COVID-19 , Computer Simulation , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Pandemics , Models, Statistical , SARS-CoV-2 , Health Policy , United Kingdom/epidemiology
17.
Dermatol Surg ; 50(2): 165-170, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38091485

ABSTRACT

BACKGROUND: Cellulite is an aesthetically displeasing rippling or dimpling of the skin, primarily on the buttocks/thighs. A recent study showed a novel acoustic subcision device produced significant short-term (12-week) improvement in the appearance of cellulite after a single rapid acoustic pulse (RAP) treatment. OBJECTIVE: To evaluate the long-term (>52-weeks) efficacy and safety of RAP treatment for improvement in the appearance of cellulite. MATERIALS AND METHODS: In this prospective, multicenter trial, female participants ( n = 42) with severe cellulite were treated with the acoustic subcision device in a single visit. At >52 weeks, blinded board-certified dermatologists assessed efficacy by correctly identifying post-treatment photographs and using a 6-point simplified Cellulite Severity Scale (CSS). Participant satisfaction was also collected. Safety was assessed throughout. RESULTS: The blinded panel correctly identified post-treatment photographs at a rate of 95.2%; 70.4% of participants had a >1-point reduction in the CSS score from baseline (mean reduction of 1.09). All participants (100%) reported improved cellulite appearance. Overall pain during treatment was rated as 2.4 and 0.3 post-treatment (pain scale 0-10). No device or treatment-related adverse events were reported at the >52-week follow-up. CONCLUSION: Rapid acoustic pulse treatment significantly improved the long-term appearance of cellulite and was well-tolerated.


Subject(s)
Cellulite , Cosmetic Techniques , Humans , Female , Patient Satisfaction , Cellulite/surgery , Prospective Studies , Buttocks , Thigh , Acoustics , Pain , Treatment Outcome
18.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35325204

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
J Gen Virol ; 104(5)2023 05.
Article in English | MEDLINE | ID: mdl-37141106

ABSTRACT

The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.


Subject(s)
Viruses , Viruses/classification , Classification
20.
Am J Gastroenterol ; 118(6): 991-1000, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36191276

ABSTRACT

INTRODUCTION: Given the hepatitis C virus (HCV) burden and despite curative treatments, more efforts focused on scaling-up testing and treatment in homeless populations are needed. This project aimed to implement education and flexible on-site HCV testing, treatment, and follow-up for a homeless population in south London and to evaluate engagement, therapy initiation, and cure rates. METHODS: A mobile unit (van) for on-site HCV education, screening, treatment, and follow-up was placed on the street in a well-known homeless population areas from January 2018 to September 2021. Homeless was defined as living in temporary housing (hostel/hotel-based) or living on the street (street-based). Sociodemographic status, risk factors, comorbidities, concomitant medication, and data related with HCV treatment were recorded. Univariable and multivariable modeling were performed for treatment initiation and sustained virological response (SVR). RESULTS: Nine hundred forty homeless people were identified and 99.3% participated. 56.2% were street-based, 243 (26%) tested positive for HCV antibody, and 162 (17.4%) were viremic. Those with detectable HCV RNA had significantly more frequent psychiatric disorders, active substance use disorders, were on opioid agonist treatment, had advanced fibrosis, and had lower rates of previous treatment in comparison with undetectable HCV RNA. Overall treatment initiation was 70.4% and SVR was 72.8%. In the multivariable analysis, being screened in temporary housing (odds ratio [OR] 3.166; P = 0.002) and having opioid agonist treatment (OR 3.137; P = 0.004) were positively associated with treatment initiation. HCV treatment adherence (OR 26.552; P < 0.001) was the only factor associated with achieving SVR. DISCUSSION: Promoting education and having flexible and reflex mobile on-site testing and treatment for HCV in the homeless population improve engagement with the health care system, meaning higher rates of treatment initiation and SVR. However, street-based homeless population not linked with harm reduction services are less likely to initiate HCV treatment, highlighting an urgent need for a broad health inclusion system.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepacivirus , Analgesics, Opioid/therapeutic use , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Delivery of Health Care , RNA/therapeutic use , Antiviral Agents/therapeutic use , Hepatitis C, Chronic/diagnosis , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL