Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 54(8): 1883-1900.e5, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34331874

ABSTRACT

Mononuclear phagocytes (MNPs) encompass dendritic cells, monocytes, and macrophages (MoMac), which exhibit antimicrobial, homeostatic, and immunoregulatory functions. We integrated 178,651 MNPs from 13 tissues across 41 datasets to generate a MNP single-cell RNA compendium (MNP-VERSE), a publicly available tool to map MNPs and define conserved gene signatures of MNP populations. Next, we generated a MoMac-focused compendium that revealed an array of specialized cell subsets widely distributed across multiple tissues. Specific pathological forms were expanded in cancer and inflammation. All neoplastic tissues contained conserved tumor-associated macrophage populations. In particular, we focused on IL4I1+CD274(PD-L1)+IDO1+ macrophages, which accumulated in the tumor periphery in a T cell-dependent manner via interferon-γ (IFN-γ) and CD40/CD40L-induced maturation from IFN-primed monocytes. IL4I1_Macs exhibited immunosuppressive characteristics through tryptophan degradation and promoted the entry of regulatory T cell into tumors. This integrated analysis provides a robust online-available platform for uniform annotation and dissection of specific macrophage functions in healthy and pathological states.


Subject(s)
Dendritic Cells/immunology , Gene Expression/immunology , Monocytes/immunology , Transcriptome/genetics , Tumor-Associated Macrophages/immunology , Arthritis, Rheumatoid/immunology , COVID-19/immunology , Gene Expression/genetics , Gene Expression Profiling , Humans , Interferon-gamma/immunology , L-Amino Acid Oxidase/metabolism , Liver Cirrhosis/immunology , Macrophages/immunology , Neoplasms/immunology , RNA, Small Cytoplasmic/genetics , Single-Cell Analysis , T-Lymphocytes, Regulatory/immunology , Transcriptome/immunology
2.
EMBO J ; 39(19): e104063, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32790115

ABSTRACT

The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the development of stromal-targeted therapies. Single-cell RNA sequencing of five TNBCs revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) subpopulations. CAFs clustered into two states: the first with features of myofibroblasts and the second characterised by high expression of growth factors and immunomodulatory molecules. PVL cells clustered into two states consistent with a differentiated and immature phenotype. We showed that these stromal states have distinct morphologies, spatial relationships and functional properties in regulating the extracellular matrix. Using cell signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse array of immunoregulatory molecules. Importantly, the investigation of gene signatures from inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively. Such insights present promising candidates to further investigate for new therapeutic strategies in the treatment of TNBCs.


Subject(s)
Triple Negative Breast Neoplasms/immunology , Tumor Escape , Extracellular Matrix/immunology , Extracellular Matrix/pathology , Female , Humans , RNA-Seq , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Triple Negative Breast Neoplasms/pathology
3.
PLoS Genet ; 16(1): e1008531, 2020 01.
Article in English | MEDLINE | ID: mdl-31895944

ABSTRACT

Acquired resistance to endocrine therapy is responsible for half of the therapeutic failures in the treatment of breast cancer. Recent findings have implicated increased expression of the ETS transcription factor ELF5 as a potential modulator of estrogen action and driver of endocrine resistance, and here we provide the first insight into the mechanisms by which ELF5 modulates estrogen sensitivity. Using chromatin immunoprecipitation sequencing we found that ELF5 binding overlapped with FOXA1 and ER at super enhancers, enhancers and promoters, and when elevated, caused FOXA1 and ER to bind to new regions of the genome, in a pattern that replicated the alterations to the ER/FOXA1 cistrome caused by the acquisition of resistance to endocrine therapy. RNA sequencing demonstrated that these changes altered estrogen-driven patterns of gene expression, the expression of ER transcription-complex members, and 6 genes known to be involved in driving the acquisition of endocrine resistance. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, and proximity ligation assays, we found that ELF5 interacted physically with members of the ER transcription complex, such as DNA-PKcs. We found 2 cases of endocrine-resistant brain metastases where ELF5 levels were greatly increased and ELF5 patterns of gene expression were enriched, compared to the matched primary tumour. Thus ELF5 alters ER-driven gene expression by modulating the ER/FOXA1 cistrome, by interacting with it, and by modulating the expression of members of the ER transcriptional complex, providing multiple mechanisms by which ELF5 can drive endocrine resistance.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Transcription Factors/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , MCF-7 Cells , Mice , Protein Binding
4.
EMBO Rep ; 21(6): e50162, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32314873

ABSTRACT

The latency associated with bone metastasis emergence in castrate-resistant prostate cancer is attributed to dormancy, a state in which cancer cells persist prior to overt lesion formation. Using single-cell transcriptomics and ex vivo profiling, we have uncovered the critical role of tumor-intrinsic immune signaling in the retention of cancer cell dormancy. We demonstrate that loss of tumor-intrinsic type I IFN occurs in proliferating prostate cancer cells in bone. This loss suppresses tumor immunogenicity and therapeutic response and promotes bone cell activation to drive cancer progression. Restoration of tumor-intrinsic IFN signaling by HDAC inhibition increased tumor cell visibility, promoted long-term antitumor immunity, and blocked cancer growth in bone. Key findings were validated in patients, including loss of tumor-intrinsic IFN signaling and immunogenicity in bone metastases compared to primary tumors. Data herein provide a rationale as to why current immunotherapeutics fail in bone-metastatic prostate cancer, and provide a new therapeutic strategy to overcome the inefficacy of immune-based therapies in solid cancers.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Humans , Interferons , Male , Prostatic Neoplasms/genetics , Signal Transduction
5.
Blood ; 134(1): 30-43, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31023703

ABSTRACT

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Subject(s)
Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Stem Cell Niche/genetics , Animals , Humans , Mice , Neoplasm Recurrence, Local/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcriptome , Axl Receptor Tyrosine Kinase
6.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32527287

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Animals , Apoptosis/physiology , Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Chromatin/genetics , Chromatin/metabolism , DNA Damage , Female , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Proteogenomics , Tumor Cells, Cultured
7.
PLoS Genet ; 13(11): e1007072, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29117179

ABSTRACT

We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Lactation/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Adenine Nucleotides/metabolism , Animals , Cell Culture Techniques , Endoribonucleases/metabolism , Female , Humans , Mammary Glands, Animal/metabolism , Mice , Milk , Mutation/genetics , Oligoribonucleotides/metabolism , RNA, Double-Stranded/metabolism , Signal Transduction/genetics
8.
PLoS Biol ; 13(12): e1002330, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26717410

ABSTRACT

During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Lung Neoplasms/secondary , Lung/metabolism , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Animals , Breast Neoplasms/immunology , Breast Neoplasms/physiopathology , Breast Neoplasms/virology , Capillary Permeability , Cell Proliferation , DNA-Binding Proteins , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hemorrhage/etiology , Hemorrhage/prevention & control , Humans , Leukocytes/immunology , Leukocytes/pathology , Lung/blood supply , Lung/immunology , Lung/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/pathology , Lung Neoplasms/prevention & control , Lymphocyte Depletion , Mice, Transgenic , Myeloid Cells/immunology , Myeloid Cells/pathology , Neoplasm Proteins/genetics , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/prevention & control , Neutrophil Infiltration , Polyomavirus/pathogenicity , Proto-Oncogene Proteins c-ets/genetics , Recombinant Fusion Proteins/metabolism , Survival Analysis , Transcription Factors , Tumor Burden
9.
Breast Cancer Res ; 18(1): 4, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738740

ABSTRACT

BACKGROUND: E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. METHODS: RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. RESULTS: ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. CONCLUSIONS: Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer.


Subject(s)
Alternative Splicing/genetics , DNA-Binding Proteins/genetics , Neoplasms/genetics , Protein Isoforms/genetics , Proto-Oncogene Proteins c-ets/genetics , Animals , DNA-Binding Proteins/biosynthesis , Female , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Humans , Mammary Glands, Human/pathology , Neoplasms/pathology , Organ Specificity , Pregnancy , Promoter Regions, Genetic , Protein Isoforms/biosynthesis , Proto-Oncogene Proteins c-ets/biosynthesis , Transcription Factors
10.
Mol Carcinog ; 55(12): 1940-1951, 2016 12.
Article in English | MEDLINE | ID: mdl-26676339

ABSTRACT

Wild-type TP53 exons 5-8 contain CpG dinucleotides that are prone to methylation-dependent mutation during carcinogenesis, but the regulatory effects of methylation affecting these CpG sites are unclear. To clarify this, we first assessed site-specific TP53 CpG methylation in normal and transformed cells. Both DNA damage and cell ageing were associated with site-specific CpG demethylation in exon 5 accompanied by induction of a truncated TP53 isoform regulated by an adjacent intronic promoter (P2). We then synthesized novel synonymous TP53 alleles with divergent CpG content but stable encodement of the wild-type polypeptide. Expression of CpG-enriched TP53 constructs selectively reduced production of the full-length transcript (P1), consistent with a causal relationship between intragenic demethylation and transcription. 450K methylation comparison of normal (TP53-wildtype) and cancerous (TP53-mutant) human cells and tissues revealed focal cancer-associated declines in CpG methylation near the P1 transcription start site, accompanied by rises near the alternate exon 5 start site. These data confirm that site-specific changes of intragenic TP53 CpG methylation are extrinsically inducible, and suggest that human cancer progression is mediated in part by dysregulation of damage-inducible intragenic CpG demethylation that alters TP53 P1/P2 isoform expression. © 2015 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.


Subject(s)
CpG Islands , DNA Damage , DNA Methylation , Genes, p53 , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Base Sequence , Caco-2 Cells , Cell Line , Cell Line, Tumor , Exons , Gene Expression Regulation, Neoplastic , Humans , Introns , Mice , Promoter Regions, Genetic , Transcriptional Activation
11.
Breast Cancer Res ; 17: 83, 2015 Jun 13.
Article in English | MEDLINE | ID: mdl-26070602

ABSTRACT

INTRODUCTION: The study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged. METHODS: microRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray, bioinformatics and 3' untranslated region Luciferase reporter assay. The methylation status of primary patient samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative targets was assessed using publicly available datasets. RESULTS: A large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients. CONCLUSIONS: These studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling , Genes, Tumor Suppressor , Mammary Glands, Animal/metabolism , MicroRNAs/genetics , Sexual Maturation/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cluster Analysis , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Mice , Neoplasm Metastasis , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , TOR Serine-Threonine Kinases/metabolism
12.
Kidney Int ; 87(5): 875-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25951065

ABSTRACT

Though the majority of kidney allografts are eventually lost to the process of chronic rejection, there are instances when kidney function is maintained after patients have stopped their immunosuppression. Baron and colleagues have examined the blood gene signature of patients with spontaneous kidney tolerance and identified a series of genes that they suggest define kidney graft acceptance. This exciting development provides a potential list of biomarkers defining immunological tolerance in humans.


Subject(s)
Allografts/immunology , Immune Tolerance/genetics , Kidney Transplantation , Humans
13.
PLoS Biol ; 10(12): e1001461, 2012.
Article in English | MEDLINE | ID: mdl-23300383

ABSTRACT

We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Estrogens/pharmacology , Proto-Oncogene Proteins c-ets/metabolism , Animals , Binding Sites , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin Immunoprecipitation , DNA, Neoplasm/metabolism , DNA-Binding Proteins , Female , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human/genetics , Humans , Mice , Models, Biological , Phenotype , Protein Binding/drug effects , Protein Binding/genetics , Proto-Oncogene Proteins c-ets/genetics , Sequence Analysis, DNA , Transcription Factors , Transcription, Genetic/drug effects
14.
Crit Care Explor ; 6(7): e1117, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045433

ABSTRACT

OBJECTIVES: Cardiogenic shock (CS) is associated with high mortality. Patients treated for CS mostly require heparin therapy, which may be associated with complications such as heparin-induced thrombocytopenia (HIT). HIT represents a serious condition associated with platelet decline and increased hypercoagulability and remains a poorly researched field in intensive care medicine. Primary purpose of this study was to: 1) determine HIT prevalence in CS, 2) assess the performance of common diagnostic tests for the workup of HIT, and 3) compare outcomes in CS patients with excluded and confirmed HIT. DESIGN: Retrospective dual-center study including adult patients 18 years old or older with diagnosed CS and suspected HIT from January 2010 to November 2022. SETTING: Cardiac ICU at the Ludwig-Maximilians University hospital in Munich and the university hospital of Bonn. PATIENTS AND INTERVENTIONS: In this retrospective analysis, adult patients with diagnosed CS and suspected HIT were included. Differences in baseline characteristics, mortality, neurologic and safety outcomes between patients with excluded and confirmed HIT were evaluated. MEASUREMENTS AND MAIN RESULTS: In cases of suspected HIT, positive screening antibodies were detected in 159 of 2808 patients (5.7%). HIT was confirmed via positive functional assay in 57 of 2808 patients, corresponding to a prevalence rate of 2.0%. The positive predictive value for anti-platelet factor 4/heparin screening antibodies was 35.8%. Total in-hospital mortality (58.8% vs. 57.9%; p > 0.999), 1-month mortality (47.1% vs. 43.9%; p = 0.781), and 12-month mortality (58.8% vs. 59.6%; p > 0.999) were similar between patients with excluded and confirmed HIT, respectively. Furthermore, no significant difference in neurologic outcome among survivors was found between groups (Cerebral Performance Category [CPC] score 1: 8.8% vs. 8.8%; p > 0.999 and CPC 2: 7.8% vs. 12.3%; p = 0.485). CONCLUSIONS: HIT was a rare complication in CS patients treated with unfractionated heparin and was not associated with increased mortality. Also, HIT confirmation was not associated with worse neurologic outcome in survivors. Future studies should aim at developing more precise, standardized, and cost-effective strategies to diagnose HIT and prevent complications.


Subject(s)
Anticoagulants , Heparin , Shock, Cardiogenic , Thrombocytopenia , Humans , Heparin/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Thrombocytopenia/diagnosis , Thrombocytopenia/mortality , Retrospective Studies , Shock, Cardiogenic/chemically induced , Shock, Cardiogenic/epidemiology , Shock, Cardiogenic/mortality , Female , Male , Aged , Middle Aged , Anticoagulants/adverse effects , Prevalence , Germany/epidemiology
15.
Crit Care Explor ; 6(7): e1117, 2024 07 01.
Article in English | MEDLINE | ID: mdl-39042702

ABSTRACT

OBJECTIVES: Cardiogenic shock (CS) is associated with high mortality. Patients treated for CS mostly require heparin therapy, which may be associated with complications such as heparin-induced thrombocytopenia (HIT). HIT represents a serious condition associated with platelet decline and increased hypercoagulability and remains a poorly researched field in intensive care medicine. Primary purpose of this study was to: 1) determine HIT prevalence in CS, 2) assess the performance of common diagnostic tests for the workup of HIT, and 3) compare outcomes in CS patients with excluded and confirmed HIT. DESIGN: Retrospective dual-center study including adult patients 18 years old or older with diagnosed CS and suspected HIT from January 2010 to November 2022. SETTING: Cardiac ICU at the Ludwig-Maximilians University hospital in Munich and the university hospital of Bonn. PATIENTS AND INTERVENTIONS: In this retrospective analysis, adult patients with diagnosed CS and suspected HIT were included. Differences in baseline characteristics, mortality, neurologic and safety outcomes between patients with excluded and confirmed HIT were evaluated. MEASUREMENTS AND MAIN RESULTS: In cases of suspected HIT, positive screening antibodies were detected in 159 of 2808 patients (5.7%). HIT was confirmed via positive functional assay in 57 of 2808 patients, corresponding to a prevalence rate of 2.0%. The positive predictive value for anti-platelet factor 4/heparin screening antibodies was 35.8%. Total in-hospital mortality (58.8% vs. 57.9%; p > 0.999), 1-month mortality (47.1% vs. 43.9%; p = 0.781), and 12-month mortality (58.8% vs. 59.6%; p > 0.999) were similar between patients with excluded and confirmed HIT, respectively. Furthermore, no significant difference in neurologic outcome among survivors was found between groups (Cerebral Performance Category [CPC] score 1: 8.8% vs. 8.8%; p > 0.999 and CPC 2: 7.8% vs. 12.3%; p = 0.485). CONCLUSIONS: HIT was a rare complication in CS patients treated with unfractionated heparin and was not associated with increased mortality. Also, HIT confirmation was not associated with worse neurologic outcome in survivors. Future studies should aim at developing more precise, standardized, and cost-effective strategies to diagnose HIT and prevent complications.


Subject(s)
Anticoagulants , Heparin , Shock, Cardiogenic , Thrombocytopenia , Humans , Heparin/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Thrombocytopenia/diagnosis , Thrombocytopenia/mortality , Retrospective Studies , Shock, Cardiogenic/chemically induced , Shock, Cardiogenic/epidemiology , Shock, Cardiogenic/mortality , Female , Male , Aged , Middle Aged , Anticoagulants/adverse effects , Prevalence , Germany/epidemiology
16.
Clin Res Cardiol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587564

ABSTRACT

BACKGROUND AND AIMS: Candidate selection for lung transplantation (LuTx) is pivotal to ensure individual patient benefit as well as optimal donor organ allocation. The impact of coronary artery disease (CAD) on post-transplant outcomes remains controversial. We provide comprehensive data on the relevance of CAD for short- and long-term outcomes following LuTx and identify risk factors for mortality. METHODS: We retrospectively analyzed all adult patients (≥ 18 years) undergoing primary and isolated LuTx between January 2000 and August 2021 at the LMU University Hospital transplant center. Using 1:1 propensity score matching, 98 corresponding pairs of LuTx patients with and without relevant CAD were identified. RESULTS: Among 1,003 patients having undergone LuTx, 104 (10.4%) had relevant CAD at baseline. There were no significant differences in in-hospital mortality (8.2% vs. 8.2%, p > 0.999) as well as overall survival (HR 0.90, 95%CI [0.61, 1.32], p = 0.800) between matched CAD and non-CAD patients. Similarly, cardiovascular events such as myocardial infarction (7.1% CAD vs. 2.0% non-CAD, p = 0.170), revascularization by percutaneous coronary intervention (5.1% vs. 1.0%, p = 0.212), and stroke (2.0% vs. 6.1%, p = 0.279), did not differ statistically between both matched groups. 7.1% in the CAD group and 2.0% in the non-CAD group (p = 0.078) died from cardiovascular causes. Cox regression analysis identified age at transplantation (HR 1.02, 95%CI [1.01, 1.04], p < 0.001), elevated bilirubin (HR 1.33, 95%CI [1.15, 1.54], p < 0.001), obstructive lung disease (HR 1.43, 95%CI [1.01, 2.02], p = 0.041), decreased forced vital capacity (HR 0.99, 95%CI [0.99, 1.00], p = 0.042), necessity of reoperation (HR 3.51, 95%CI [2.97, 4.14], p < 0.001) and early transplantation time (HR 0.97, 95%CI [0.95, 0.99], p = 0.001) as risk factors for all-cause mortality, but not relevant CAD (HR 0.96, 95%CI [0.71, 1.29], p = 0.788). Double lung transplant was associated with lower all-cause mortality (HR 0.65, 95%CI [0.52, 0.80], p < 0.001), but higher in-hospital mortality (OR 2.04, 95%CI [1.04, 4.01], p = 0.039). CONCLUSION: In this cohort, relevant CAD was not associated with worse outcomes and should therefore not be considered a contraindication for LuTx. Nonetheless, cardiovascular events in CAD patients highlight the necessity of control of cardiovascular risk factors and a structured cardiac follow-up.

17.
Front Cardiovasc Med ; 11: 1351633, 2024.
Article in English | MEDLINE | ID: mdl-38550519

ABSTRACT

Critical care cardiology (CCC) in the modern era is shaped by a multitude of innovative treatment options and an increasingly complex, ageing patient population. Generating high-quality evidence for novel interventions and devices in an intensive care setting is exceptionally challenging. As a result, formulating the best possible therapeutic approach continues to rely predominantly on expert opinion and local standard operating procedures. Fostering the full potential of CCC and the maturation of the next generation of decision-makers in this field calls for an updated training concept, that encompasses the extensive knowledge and skills required to care for critically ill cardiac patients while remaining adaptable to the trainee's individual career planning and existing educational programs. In the present manuscript, we suggest a standardized training phase in preparation of the first ICU rotation, propose a modular CCC core curriculum, and outline how training components could be conceptualized within three sub-specialization tracks for aspiring cardiac intensivists.

18.
J Cardiovasc Transl Res ; 16(1): 152-154, 2023 02.
Article in English | MEDLINE | ID: mdl-35668315

ABSTRACT

Our study investigated the feasibility to measure pressure profiles inside the inflation balloon during direct implantation of Edwards Sapien 3 ultra-prostheses using an additional syringe with a digital pressure read-out. Pressure profiles of 15 patients for 26 mm valve size were analyzed. Uniform patterns were found for 5 patients similar to those of previously acquired in vitro curves. 10 patients showed strikingly different pressure profiles compared to the above-mentioned group, marked by an earlier pressure increase, single or multiple pressure drops or higher overall pressure. Measuring the percentage of under-expansion of the prostheses, using calibrated angiographic projections revealed a significant difference between both groups. Our data raises the hypothesis that the acquisition of pressure profiles might help to better understand not only the implantation procedure itself but also the highly individual patient-device interaction, offering new information and a new perspective on optimization of TAVR implantation in the future.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Feasibility Studies , Treatment Outcome , Prosthesis Design
19.
Nat Commun ; 14(1): 5758, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37717006

ABSTRACT

Cells within the tumour microenvironment (TME) can impact tumour development and influence treatment response. Computational approaches have been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq profiling from breast tumours we simulate thousands of bulk mixtures, representing tumour purities and cell lineages, to compare the performance of nine TME deconvolution methods (BayesPrism, Scaden, CIBERSORTx, MuSiC, DWLS, hspe, CPM, Bisque, and EPIC). Some methods are more robust in deconvolving mixtures with high tumour purity levels. Most methods tend to mis-predict normal epithelial for cancer epithelial as tumour purity increases, a finding that is validated in two independent datasets. The breast cancer molecular subtype influences this mis-prediction. BayesPrism and DWLS have the lowest combined numbers of false positives and false negatives, and have the best performance when deconvolving granular immune lineages. Our findings highlight the need for more single-cell characterisation of rarer cell types, and suggest that tumour cell compositions should be considered when deconvolving the TME.


Subject(s)
Mammary Neoplasms, Animal , Music , Animals , Tumor Microenvironment , Cell Lineage , RNA-Seq
20.
EMBO Mol Med ; 15(12): e17737, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37902007

ABSTRACT

Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes. We reveal that GR engages with estrogen receptor (ER), leading to redistribution of ER on the chromatin. Notably, GR activation leads to upregulation of the ZBTB16 gene, encoding for a transcriptional repressor, which controls growth in ER-positive breast cancer and associates with prognosis in luminal A patients. In relation to ZBTB16's repressive nature, GR activation leads to epigenetic remodeling and loss of histone acetylation at sites proximal to cancer-driving genes. Based on these findings, epigenetic inhibitors reduce viability of ER-positive breast cancer cells that display absence of GR activity. Our findings provide insights into how GR controls ER-positive breast cancer growth and may have implications for patients' prognostication and provide novel therapeutic candidates for breast cancer treatment.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL