Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791415

ABSTRACT

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Subject(s)
Databases, Genetic , Genomics , Internet , Software , Animals , Computational Biology , Genome, Bacterial/genetics , Genome, Fungal/genetics , Genome, Plant/genetics , Plants/classification , Plants/genetics , Vertebrates/classification , Vertebrates/genetics
2.
Nucleic Acids Res ; 48(D1): D762-D767, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31642470

ABSTRACT

WormBase (https://wormbase.org/) is a mature Model Organism Information Resource supporting researchers using the nematode Caenorhabditis elegans as a model system for studies across a broad range of basic biological processes. Toward this mission, WormBase efforts are arranged in three primary facets: curation, user interface and architecture. In this update, we describe progress in each of these three areas. In particular, we discuss the status of literature curation and recently added data, detail new features of the web interface and options for users wishing to conduct data mining workflows, and discuss our efforts to build a robust and scalable architecture by leveraging commercial cloud offerings. We conclude with a description of WormBase's role as a founding member of the nascent Alliance of Genome Resources.


Subject(s)
Caenorhabditis elegans/genetics , Databases, Genetic , Genes, Helminth , Animals , Data Mining , Genomics , Internet , User-Computer Interface
3.
BMC Biol ; 18(1): 165, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33167983

ABSTRACT

BACKGROUND: Chromosome-level assemblies are indispensable for accurate gene prediction, synteny assessment, and understanding higher-order genome architecture. Reference and draft genomes of key helminth species have been published, but little is yet known about the biology of their chromosomes. Here, we present the complete genome of the tapeworm Hymenolepis microstoma, providing a reference quality, end-to-end assembly that represents the first fully assembled genome of a spiralian/lophotrochozoan, revealing new insights into chromosome evolution. RESULTS: Long-read sequencing and optical mapping data were added to previous short-read data enabling complete re-assembly into six chromosomes, consistent with karyology. Small genome size (169 Mb) and lack of haploid variation (1 SNP/3.2 Mb) contributed to exceptionally high contiguity with only 85 gaps remaining in regions of low complexity sequence. Resolution of repeat regions reveals novel gene expansions, micro-exon genes, and spliced leader trans-splicing, and illuminates the landscape of transposable elements, explaining observed length differences in sister chromatids. Syntenic comparison with other parasitic flatworms shows conserved ancestral linkage groups indicating that the H. microstoma karyotype evolved through fusion events. Strikingly, the assembly reveals that the chromosomes terminate in centromeric arrays, indicating that these motifs play a role not only in segregation, but also in protecting the linear integrity and full lengths of chromosomes. CONCLUSIONS: Despite strong conservation of canonical telomeres, our results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres. The assembly provides a robust platform for investigations that require complete genome representation.


Subject(s)
Chromosomes/metabolism , DNA Transposable Elements/genetics , Genome, Helminth , Hymenolepis/genetics , Synteny , Animals , Centromere/metabolism , Chromosome Segregation
4.
Nucleic Acids Res ; 46(D1): D869-D874, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29069413

ABSTRACT

WormBase (http://www.wormbase.org) is an important knowledge resource for biomedical researchers worldwide. To accommodate the ever increasing amount and complexity of research data, WormBase continues to advance its practices on data acquisition, curation and retrieval to most effectively deliver comprehensive knowledge about Caenorhabditis elegans, and genomic information about other nematodes and parasitic flatworms. Recent notable enhancements include user-directed submission of data, such as micropublication; genomic data curation and presentation, including additional genomes and JBrowse, respectively; new query tools, such as SimpleMine, Gene Enrichment Analysis; new data displays, such as the Person Lineage browser and the Summary of Ontology-based Annotations. Anticipating more rapid data growth ahead, WormBase continues the process of migrating to a cutting-edge database technology to achieve better stability, scalability, reproducibility and a faster response time. To better serve the broader research community, WormBase, with five other Model Organism Databases and The Gene Ontology project, have begun to collaborate formally as the Alliance of Genome Resources.


Subject(s)
Databases, Genetic , Genome , Nematoda/genetics , Animals , Caenorhabditis/genetics , Caenorhabditis elegans/genetics , Data Curation , Data Mining , Datasets as Topic , Disease Models, Animal , Forecasting , Gene Ontology , Humans , Information Storage and Retrieval , Platyhelminths/genetics , Publishing , RNA Interference , Sequence Alignment , User-Computer Interface , Web Browser
5.
PLoS Pathog ; 13(5): e1006391, 2017 May.
Article in English | MEDLINE | ID: mdl-28545061

ABSTRACT

Manipulation of the mosquito gut microbiota can lay the foundations for novel methods for disease transmission control. Mosquito blood feeding triggers a significant, transient increase of the gut microbiota, but little is known about the mechanisms by which the mosquito controls this bacterial growth whilst limiting inflammation of the gut epithelium. Here, we investigate the gut epithelial response to the changing microbiota load upon blood feeding in the malaria vector Anopheles coluzzii. We show that the synthesis and integrity of the peritrophic matrix, which physically separates the gut epithelium from its luminal contents, is microbiota dependent. We reveal that the peritrophic matrix limits the growth and persistence of Enterobacteriaceae within the gut, whilst preventing seeding of a systemic infection. Our results demonstrate that the peritrophic matrix is a key regulator of mosquito gut homeostasis and establish functional analogies between this and the mucus layers of the mammalian gastrointestinal tract.


Subject(s)
Host-Parasite Interactions , Malaria/immunology , Microbiota/immunology , Mosquito Vectors/microbiology , Sepsis/immunology , Animals , Anopheles/microbiology , Epithelium/parasitology , Female , Gastrointestinal Tract/microbiology , Gene Library , Homeostasis , Humans , Malaria/parasitology , Malaria/transmission , Sepsis/parasitology , Sequence Analysis, RNA
6.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35134929

ABSTRACT

WormBase (www.wormbase.org) is the central repository for the genetics and genomics of the nematode Caenorhabditis elegans. We provide the research community with data and tools to facilitate the use of C. elegans and related nematodes as model organisms for studying human health, development, and many aspects of fundamental biology. Throughout our 22-year history, we have continued to evolve to reflect progress and innovation in the science and technologies involved in the study of C. elegans. We strive to incorporate new data types and richer data sets, and to provide integrated displays and services that avail the knowledge generated by the published nematode genetics literature. Here, we provide a broad overview of the current state of WormBase in terms of data type, curation workflows, analysis, and tools, including exciting new advances for analysis of single-cell data, text mining and visualization, and the new community collaboration forum. Concurrently, we continue the integration and harmonization of infrastructure, processes, and tools with the Alliance of Genome Resources, of which WormBase is a founding member.


Subject(s)
Caenorhabditis , Nematoda , Animals , Caenorhabditis/genetics , Caenorhabditis elegans/genetics , Databases, Genetic , Genome , Genomics , Humans , Nematoda/genetics
7.
Nat Commun ; 13(1): 1725, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365634

ABSTRACT

Whipworms are large metazoan parasites that inhabit multi-intracellular epithelial tunnels in the large intestine of their hosts, causing chronic disease in humans and other mammals. How first-stage larvae invade host epithelia and establish infection remains unclear. Here we investigate early infection events using both Trichuris muris infections of mice and murine caecaloids, the first in-vitro system for whipworm infection and organoid model for live helminths. We show that larvae degrade mucus layers to access epithelial cells. In early syncytial tunnels, larvae are completely intracellular, woven through multiple live dividing cells. Using single-cell RNA sequencing of infected mouse caecum, we reveal that progression of infection results in cell damage and an expansion of enterocytes expressing of Isg15, potentially instigating the host immune response to the whipworm and tissue repair. Our results unravel intestinal epithelium invasion by whipworms and reveal specific host-parasite interactions that allow the whipworm to establish its multi-intracellular niche.


Subject(s)
Helminths , Trichuriasis , Animals , Intestinal Mucosa , Intestines/parasitology , Mammals , Mice , Trichuris/physiology
8.
Insect Biochem Mol Biol ; 118: 103288, 2020 03.
Article in English | MEDLINE | ID: mdl-31760136

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) constitute the primary means of bacterial recognition in insects. Recent work in the model organism Drosophila has revealed the mechanisms by which the complement of PGRPs refine the sensitivity of different tissues to bacterial elicitors, permitting the persistence of commensal bacteria in the gut whilst maintaining vigilance against bacterial infection. Here, we use in vivo knockdowns and in vitro pull-down assays to investigate the role of the three major isoforms of the transmembrane receptor of the Imd pathway, PGRPLC, in basal immunity in the Anopheles coluzzii mosquito midgut. Our results indicate that the mosquito midgut is regionalized in its expression of immune effectors and of PGRPLC1. We show that PGRPLC1 and PGRPLC3 are pulled down with polymeric DAP-type peptidoglycan, while PGRPLC2 and PGRPLC3 co-precipitate in the presence of TCT, a peptidoglycan monomer. These data suggest that, as found in Drosophila, discrimination of polymeric and monomeric PGN by Anopheles PGRPLC participates in the regulation of the Imd pathway.


Subject(s)
Anopheles/genetics , Carrier Proteins/genetics , Insect Proteins/genetics , Animals , Anopheles/metabolism , Carrier Proteins/metabolism , Female , Gastrointestinal Tract/metabolism , Insect Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
9.
Int J Parasitol ; 50(9): 707-718, 2020 08.
Article in English | MEDLINE | ID: mdl-32659277

ABSTRACT

The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling.


Subject(s)
Cecum/parasitology , Extracellular Vesicles/metabolism , Host-Parasite Interactions , Organoids , Trichuriasis/parasitology , Trichuris/metabolism , Animals , Mice , Mice, Inbred C57BL , Organoids/metabolism , Organoids/parasitology
10.
Commun Biol ; 3(1): 656, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168940

ABSTRACT

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.


Subject(s)
Genome, Helminth/genetics , Haemonchus/genetics , Models, Biological , Transcriptome/genetics , Animals , Caenorhabditis elegans/genetics , Chromosomes/genetics , Female , Genomics , Haemonchiasis/parasitology , Haemonchus/metabolism , Haemonchus/physiology , Humans , Intestinal Diseases, Parasitic/parasitology , Life Cycle Stages/genetics , Male
11.
Methods Mol Biol ; 1757: 471-491, 2018.
Article in English | MEDLINE | ID: mdl-29761467

ABSTRACT

WormBase ParaSite ( parasite.wormbase.org ) is a comprehensive resource for the genomes of parasitic nematodes and flatworms (helminths). It currently includes genomic data for over 100 helminth species, adding value by way of consistent functional annotation, gene comparative analysis and gene expression analysis. We provide several ways of exploring the data including a choice of genome browsers, genome and gene summary pages, text and sequence searching, a query wizard, bulk downloads, and programmatic interfaces. WormBase ParaSite is released three to six times per year, and is developed in collaboration with WormBase ( www.wormbase.org ) and Ensembl Genomes ( www.ensemblgenomes.org ).


Subject(s)
Computational Biology , Databases, Genetic , Genome, Helminth , Genomics , Computational Biology/methods , Epistasis, Genetic , Gene Expression Profiling , Gene Ontology , Helminthiasis/parasitology , Phenotype , Software , Transcriptome , Web Browser
12.
J Innate Immun ; 9(4): 333-342, 2017.
Article in English | MEDLINE | ID: mdl-28494453

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) form a family of immune regulators that is conserved from insects to mammals. In the malaria vector mosquito Anophelescoluzzii, the peptidoglycan receptor PGRPLC activates the immune-deficiency (Imd) pathway limiting both the microbiota load and Plasmodium infection. Here, we carried out an RNA interference screen to examine the role of all 7 Anopheles PGRPs in infections with Plasmodium berghei and P. falciparum. We show that, in addition to PGRPLC, PGRPLA and PGRPS2/PGRPS3 also participate in antiparasitic defenses, and that PGRPLB promotes mosquito permissiveness to P. falciparum. We also demonstrate that following a mosquito blood feeding, which promotes growth of the gut microbiota, PGRPLA and PGRPLB positively and negatively regulate the activation of the Imd pathway, respectively. Our data demonstrate that PGRPs are important regulators of the mosquito epithelial immunity and vector competence.


Subject(s)
Anopheles/immunology , Bacterial Infections/immunology , Carrier Proteins/metabolism , Insect Proteins/metabolism , Malaria/metabolism , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Animals , Carrier Proteins/genetics , Gastrointestinal Microbiome , Host-Parasite Interactions , Humans , Immunity, Innate , Insect Proteins/genetics , Malaria/immunology , Mosquito Vectors , RNA, Small Interfering/genetics , Signal Transduction
13.
Nat Commun ; 6: 5921, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25562286

ABSTRACT

Malaria reduction is most efficiently achieved by vector control whereby human populations at high risk of contracting and transmitting the disease are protected from mosquito bites. Here, we identify the presence of antibiotics in the blood of malaria-infected people as a new risk of increasing disease transmission. We show that antibiotics in ingested blood enhance the susceptibility of Anopheles gambiae mosquitoes to malaria infection by disturbing their gut microbiota. This effect is confirmed in a semi-natural setting by feeding mosquitoes with blood of children naturally infected with Plasmodium falciparum. Antibiotic exposure additionally increases mosquito survival and fecundity, which are known to augment vectorial capacity. These findings suggest that malaria transmission may be exacerbated in areas of high antibiotic usage, and that regions targeted by mass drug administration programs against communicable diseases may necessitate increased vector control.


Subject(s)
Anopheles/microbiology , Anopheles/parasitology , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Malaria/transmission , Plasmodium , Analysis of Variance , Animals , Anopheles/drug effects , Fertility/drug effects , Humans , Penicillins/pharmacology , Polymerase Chain Reaction , Streptomycin/pharmacology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL