Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
Syst Appl Microbiol ; 25(4): 592-602, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12583720

ABSTRACT

Biodiversity studies of native soybean-nodulating rhizobia in soils from the Chinese Hubei province (Honghu county; pH 8, alluvial soil) have been carried out. Inoculation of an American (Williams) and an Asiatic (Peking) soybean cultivar with eleven soil samples led to the isolation of 167 rhizobia strains. The ratio (%) of slow-/fast-growing isolates was different depending on the trap plant used. All isolates were able to nodulate both cultivars, although the N2-fixation efficiency (measured as plant-top dry weight) was different among them. A total of thirty-three isolates were selected for further characterisation on the basis of physiological parameters, PCR-RFLP of symbiotic genes and Low Molecular Weight RNA, lipopolysaccharide, protein and plasmid profiles. Low Molecular Weight RNA profiling indicates that all the isolates belong to species Sinorhizobium fredii. The dendrogram obtained with the physiological parameters has been useful to classify the isolates at strain level, although plasmid profiling was the most discriminating technique to detect differences among the analysed soybean-rhizobia isolates, showing there is not two isolates identical each other. Plasmid profile analyses also revealed that some of the investigated strains contain low molecular weight plasmids (7-8-kb). They are, to our knowledge, the smallest ever found in rhizobia and they could be the starting point for the construction of the first group of vectors based on a native rhizobia replicon.


Subject(s)
Glycine max/microbiology , Sinorhizobium/classification , Sinorhizobium/isolation & purification , Soil Microbiology , China , Culture Media , DNA Primers , Genetic Variation , Hydrogen-Ion Concentration , Lipopolysaccharides/analysis , Phylogeny , Plasmids/analysis , Polymorphism, Restriction Fragment Length , Rhizobium/genetics , Rhizobium/isolation & purification , Sinorhizobium/genetics
2.
Syst Appl Microbiol ; 26(3): 453-65, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14529189

ABSTRACT

We have analysed 198 fast-growing soybean-nodulating rhizobial strains from four different regions of China for the following characteristics: generation time; number of plasmids; lipopolysaccharide (LPS), nodulation factors (LCOs) and PCR profiles; acidification of growth medium; capacity to grow at acid, neutral, and alkaline pH; growth on LC medium; growth at 28 and 37 degrees C; melanin production capacity; Congo red absorption and symbiotic characteristics. These unbiased analyses of a total subset of strains isolated from specific soybean-cropping areas (an approach which could be called "strainomics") can be used to answer various biological questions. We illustrate this by a comparison of the molecular characteristics of five strains with interesting symbiotic properties. From this comparison we conclude, for instance, that differences in the efficiency of nitrogen fixation or competitiveness for nodulation of these strains are not apparently related to differences in Nod factor structure.


Subject(s)
Glycine max/microbiology , Rhizobium/physiology , Symbiosis , Bacterial Proteins/analysis , China , Congo Red/metabolism , DNA Fingerprinting , DNA, Bacterial/isolation & purification , DNA, Ribosomal/analysis , DNA, Ribosomal Spacer/analysis , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel , Lipopolysaccharides/analysis , Melanins/biosynthesis , Plasmids , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Rhizobium/chemistry , Rhizobium/genetics , Rhizobium/isolation & purification
3.
Microbiologia ; 7(1): 13-22, 1991 Jun.
Article in English | MEDLINE | ID: mdl-1867774

ABSTRACT

Rhizobium meliloti mutants affected in the production of exopolysaccharide (EPS) were isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutants were classified into three phenotypic classes: (I) Exo-, rough mutants lacking exopolysaccharide; (II) Exos (for "small") which form tiny, compact colonies and synthesize reduced amounts of EPS; and (III) Exoc (for "constitutive"), hypermucoid mutants which overproduce EPS. Hypermucoid strains showed increased resistance to desiccation. All the mutants were able to nodulate, although a significant decrease in infectivity degree and/or competitiveness was found in rough and compact strains. Two mutants proved to be deficient in nitrogen fixation. Complementation analysis with cloned R. meliloti exo genes could not be applied to the study of these Fix- mutants because introduction of plasmids derived from cosmid vector pLAFR1 caused loss of nodulating ability. However, complementation of calcofluor staining and EPS production was observed. Complementation with certain exo genes also caused a marked increase in motility.


Subject(s)
Polysaccharides, Bacterial/biosynthesis , Rhizobium/genetics , Cell Movement , Desiccation , Genes, Bacterial , Genetic Complementation Test , Nitrogen Fixation , Rhizobium/metabolism , Rhizobium/physiology , Symbiosis
4.
Can J Microbiol ; 47(11): 1058-62, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11766056

ABSTRACT

The strain Bacillus sp. CECT 450 increased nodulation on bean (Phaseolus vulgaris L.) when co-inoculated with Rhizobium tropici CIAT 899. This positive effect occured under controlled conditions on perlite-vermiculite, sand, or in a mixture of soil and sand. This increase was also observed in a field assay. Nodulation kinetic studies suggested that the synergistic effect is pronounced during the latter stages of cultivation. In contrast, the same bacteria co-inoculated with Bradyrhizobium japonicum USDA 110 reduced nodulation on soybean (Glycine max (L.) Merr.). Inoculation with Bacillus sp. CECT 450 alone had no effect on bean plants, but reduced root growth in soybean. The survival of Bacillus sp. CECT 450 on inoculated seeds was high, even when inoculated seeds were maintained for several months at room temperature.


Subject(s)
Bacillus/growth & development , Phaseolus/growth & development , Phaseolus/microbiology , Rhizobium/growth & development , Bradyrhizobium/growth & development , Coculture Techniques , Plant Roots/growth & development , Plant Roots/microbiology , Symbiosis
5.
Appl Environ Microbiol ; 67(2): 1008-10, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11157280

ABSTRACT

Low-molecular-weight (LMW) RNA molecules were analyzed to characterize rhizobial isolates that nodulate the common bean growing in Spain. Since LMW RNA profiles, determined by staircase electrophoresis, varied across the rhizobial species nodulating beans, we demonstrated that bean isolates recovered from Spanish soils presumptively could be characterized as Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum bv. viciae and bv. trifolii, and Sinorhizobium fredii.


Subject(s)
Fabaceae/microbiology , Plants, Medicinal , RNA, Small Nuclear/analysis , Rhizobium/classification , Sinorhizobium/classification , Electrophoresis/methods , RNA, Bacterial/analysis , Rhizobium/genetics , Rhizobium/isolation & purification , Sinorhizobium/genetics , Sinorhizobium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL