Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Trends Immunol ; 44(11): 902-916, 2023 11.
Article in English | MEDLINE | ID: mdl-37813732

ABSTRACT

Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.


Subject(s)
Autoimmunity , Hypersensitivity , Humans , Autoimmunity/genetics , Epigenesis, Genetic , Epigenomics , Mutation/genetics
2.
Eur J Immunol ; 54(1): e2350633, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37799110

ABSTRACT

In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , Multiomics , Autoimmunity , Single-Cell Analysis
3.
Ann Rheum Dis ; 83(7): 865-878, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38413168

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is characterised by systemic inflammation involving various immune cell types. Monocytes, pivotal in promoting and regulating inflammation in SLE, differentiate from classic monocytes into intermediate and non-classic monocytes, assuming diverse roles and changing their proportions in inflammation. In this study, we investigated the epigenetic and transcriptomic profiles of these and novel monocyte subsets in SLE in relation to activity and progression. METHODS: We obtained the DNA methylomes and transcriptomes of classic, intermediate, non-classic monocytes in patients with SLE (at first and follow-up visits) and healthy donors. We integrated these data with single-cell transcriptomics of SLE and healthy donors and interrogated their relationships with activity and progression. RESULTS: In addition to shared DNA methylation and transcriptomic alterations associated with a strong interferon signature, we identified monocyte subset-specific alterations, especially in DNA methylation, which reflect an impact of SLE on monocyte differentiation. SLE classic monocytes exhibited a proinflammatory profile and were primed for macrophage differentiation. SLE non-classic monocytes displayed a T cell differentiation-related phenotype, with Th17-regulating features. Changes in monocyte proportions, DNA methylation and expression occurred in relation to disease activity and involved the STAT pathway. Integration of bulk with single-cell RNA sequencing datasets revealed disease activity-dependent expansion of SLE-specific monocyte subsets, further supported the interferon signature for classic monocytes, and associated intermediate and non-classic populations with exacerbated complement activation. CONCLUSIONS: Disease activity in SLE drives a subversion of the epigenome and transcriptome programme in monocyte differentiation, impacting the function of different subsets and allowing to generate predictive methods for activity and progression.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Lupus Erythematosus, Systemic , Monocytes , Transcriptome , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Monocytes/metabolism , Monocytes/immunology , Female , Adult , Male , Cell Differentiation/genetics , Middle Aged , Case-Control Studies , Disease Progression
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731936

ABSTRACT

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Multiple Myeloma , NK Cell Lectin-Like Receptor Subfamily K , Animals , Humans , Mice , ADP-ribosyl Cyclase 1/drug effects , ADP-ribosyl Cyclase 1/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Drug Synergism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Membrane Glycoproteins/drug effects , Membrane Glycoproteins/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , NK Cell Lectin-Like Receptor Subfamily K/drug effects , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use
5.
Nucleic Acids Res ; 49(9): 5057-5073, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33950194

ABSTRACT

Activation-induced deaminase (AID) initiates antibody diversification in germinal center B cells by deaminating cytosines, leading to somatic hypermutation and class-switch recombination. Loss-of-function mutations in AID lead to hyper-IgM syndrome type 2 (HIGM2), a rare human primary antibody deficiency. AID-mediated deamination has been proposed as leading to active demethylation of 5-methycytosines in the DNA, although evidence both supports and casts doubt on such a role. In this study, using whole-genome bisulfite sequencing of HIGM2 B cells, we investigated direct AID involvement in active DNA demethylation. HIGM2 naïve and memory B cells both display widespread DNA methylation alterations, of which ∼25% are attributable to active DNA demethylation. For genes that undergo active demethylation that is impaired in HIGM2 individuals, our analysis indicates that AID is not directly involved. We demonstrate that the widespread alterations in the DNA methylation and expression profiles of HIGM2 naïve B cells result from premature overstimulation of the B-cell receptor prior to the germinal center reaction. Our data support a role for AID in B cell central tolerance in preventing the expansion of autoreactive cell clones, affecting the correct establishment of DNA methylation patterns.


Subject(s)
B-Lymphocytes/immunology , Cytidine Deaminase/physiology , DNA Methylation , Hyper-IgM Immunodeficiency Syndrome/genetics , Hyper-IgM Immunodeficiency Syndrome/immunology , Autoimmunity , B-Lymphocytes/metabolism , Cytidine Deaminase/deficiency , Cytidine Deaminase/genetics , Germinal Center/immunology , Humans , Hyper-IgM Immunodeficiency Syndrome/metabolism , Immune Tolerance , Immunologic Memory , Receptors, Antigen, B-Cell/genetics , Transcriptome , Whole Genome Sequencing
6.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738589

ABSTRACT

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Subject(s)
Autophagy/physiology , Cellular Senescence , Satellite Cells, Skeletal Muscle/cytology , Aging/pathology , Animals , Cell Count , Cyclin-Dependent Kinase Inhibitor p16/genetics , Epigenesis, Genetic , Homeostasis , Humans , Male , Mice , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Organelles/metabolism , Oxidative Stress , Proteins/metabolism , Reactive Oxygen Species/metabolism , Regeneration , Sarcopenia/pathology , Sarcopenia/prevention & control , Satellite Cells, Skeletal Muscle/pathology
7.
Nucleic Acids Res ; 48(2): 665-681, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31799621

ABSTRACT

Sirtuins 1 and 2 (SIRT1/2) are two NAD-dependent deacetylases with major roles in inflammation. In addition to deacetylating histones and other proteins, SIRT1/2-mediated regulation is coupled with other epigenetic enzymes. Here, we investigate the links between SIRT1/2 activity and DNA methylation in macrophage differentiation due to their relevance in myeloid cells. SIRT1/2 display drastic upregulation during macrophage differentiation and their inhibition impacts the expression of many inflammation-related genes. In this context, SIRT1/2 inhibition abrogates DNA methylation gains, but does not affect demethylation. Inhibition of hypermethylation occurs at many inflammatory loci, which results in more drastic upregulation of their expression upon macrophage polarization following bacterial lipopolysaccharide (LPS) challenge. SIRT1/2-mediated gains of methylation concur with decreases in activating histone marks, and their inhibition revert these histone marks to resemble an open chromatin. Remarkably, specific inhibition of DNA methyltransferases is sufficient to upregulate inflammatory genes that are maintained in a silent state by SIRT1/2. Both SIRT1 and SIRT2 directly interact with DNMT3B, and their binding to proinflammatory genes is lost upon exposure to LPS or through pharmacological inhibition of their activity. In all, we describe a novel role for SIRT1/2 to restrict premature activation of proinflammatory genes.


Subject(s)
DNA Methylation/genetics , Inflammation/genetics , Sirtuin 1/genetics , Sirtuin 2/genetics , Acetylation , Cell Differentiation/genetics , Chromatin/genetics , Gene Expression Regulation/genetics , Histones/genetics , Humans , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/metabolism , Promoter Regions, Genetic , Transcriptional Activation/genetics
8.
Nature ; 506(7488): 316-21, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24522534

ABSTRACT

Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.


Subject(s)
Aging/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Adult , Animals , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Cyclin-Dependent Kinase Inhibitor p16/genetics , E2F1 Transcription Factor/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Progeria/metabolism , Progeria/pathology , Regeneration , Rejuvenation , Retinoblastoma Protein/metabolism , Young Adult
9.
Mol Cell ; 48(2): 266-76, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22981865

ABSTRACT

The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is CEBPα-induced transdifferentiation of pre-B cells into macrophages. Here we found that CEBPα binds to upstream regions of Tet2 and that the gene becomes activated. Tet2 knockdowns impaired the upregulation of macrophage markers as well as phagocytic capacity, suggesting that the enzyme is required for both early and late stage myeloid differentiation. A slightly weaker effect was seen in primary cells with a Tet2 ablation. Expression arrays of transdifferentiating cells with Tet2 knockdowns permitted the identification of a small subset of myeloid genes whose upregulation was blunted. Activation of these target genes was accompanied by rapid increases of promoter hydroxy-methylation. Our observations indicate that Tet2 helps CEBPα rapidly derepress myeloid genes during the conversion of pre-B cells into macrophages.


Subject(s)
DNA-Binding Proteins , Macrophages , Myeloid Cells , Precursor Cells, B-Lymphoid , Proto-Oncogene Proteins , Azacitidine/pharmacology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation , Cell Line , Cell Transdifferentiation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Myeloid Cells/cytology , Myeloid Cells/metabolism , Myelopoiesis , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
10.
Ann Rheum Dis ; 78(11): 1505-1516, 2019 11.
Article in English | MEDLINE | ID: mdl-31371305

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that mainly targets joints. Monocytes and macrophages are critical in RA pathogenesis and contribute to inflammatory lesions. These extremely plastic cells respond to extracellular signals which cause epigenomic changes that define their pathogenic phenotype. Here, we interrogated how DNA methylation alterations in RA monocytes are determined by extracellular signals. METHODS: High-throughput DNA methylation analyses of patients with RA and controls and in vitro cytokine stimulation were used to investigate the underlying mechanisms behind DNA methylation alterations in RA as well as their relationship with clinical parameters, including RA disease activity. RESULTS: The DNA methylomes of peripheral blood monocytes displayed significant changes and increased variability in patients with RA with respect to healthy controls. Changes in the monocyte methylome correlate with DAS28, in which high-activity patients are divergent from healthy controls in contrast to remission patients whose methylome is virtually identical to healthy controls. Indeed, the notion of a changing monocyte methylome is supported after comparing the profiles of same individuals at different stages of activity. We show how these changes are mediated by an increase in disease activity-associated cytokines, such as tumour necrosis factor alpha and interferons, as they recapitulate the DNA methylation changes observed in patients in vitro. CONCLUSION: We demonstrate a direct link between RA disease activity and the monocyte methylome through the action of inflammation-associated cytokines. Finally, we have obtained a DNA methylation-based mathematical formula that predicts inflammation-mediated disease activity for RA and other chronic immune-mediated inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/genetics , Cytokines/blood , Epigenome/immunology , Inflammation Mediators/blood , Biomarkers/blood , DNA Methylation/immunology , Humans , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/blood
11.
Nucleic Acids Res ; 45(17): 10002-10017, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28973458

ABSTRACT

The plasticity of myeloid cells is illustrated by a diversity of functions including their role as effectors of innate immunity as macrophages (MACs) and bone remodelling as osteoclasts (OCs). TET2, a methylcytosine dioxygenase highly expressed in these cells and frequently mutated in myeloid leukemias, may be a key contributor to this plasticity. Through transcriptomic and epigenomic analyses, we investigated 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and gene expression changes in two divergent terminal myeloid differentiation processes, namely MAC and OC differentiation. MACs and OCs undergo highly similar 5hmC and 5mC changes, despite their wide differences in gene expression. Many TET2- and thymine-DNA glycosylase (TDG)-dependent 5mC and 5hmC changes directly activate the common terminal myeloid differentiation programme. However, the acquisition of differential features between MACs and OCs also depends on TET2/TDG. In fact, 5mC oxidation precedes differential histone modification changes between MACs and OCs. TET2 and TDG downregulation impairs the acquisition of such differential histone modification and expression patterns at MAC-/OC-specific genes. We prove that the histone H3K4 methyltransferase SETD1A is differentially recruited between MACs and OCs in a TET2-dependent manner. We demonstrate a novel role of these enzymes in the establishment of specific elements of identity and function in terminal myeloid differentiation.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Macrophages/metabolism , Osteoclasts/metabolism , Proto-Oncogene Proteins/genetics , Thymine DNA Glycosylase/genetics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Cell Lineage/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Expression Profiling , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/cytology , Macrophages/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Primary Cell Culture , Proto-Oncogene Proteins/metabolism , RANK Ligand/pharmacology , Thymine DNA Glycosylase/metabolism , Transcriptome
12.
Clin Immunol ; 196: 64-71, 2018 11.
Article in English | MEDLINE | ID: mdl-29501540

ABSTRACT

Compelling evidences highlight the critical role of the tumor microenvironment as mediator of tumor progression and immunosuppression in several types of cancer. The reciprocal interplay between neoplastic and non-tumoral host cells is mediated by direct cell-to-cell contact, soluble factors and exosomes that result in differential gene expression patterns that are driven by epigenetic mechanisms. In this regard, extensive literature has described the abnormalities in the DNA methylation status and histone modification profiles in tumor cells. However, little is known about the mechanisms of epigenetic dysregulation that participate as a consequence of the intricate crosstalk among the cells within the tumor niche. This review summarizes the current knowledge on epigenetic changes that result from the interactions between myeloid, stromal and cancer cells in the tumor microenvironment and its functional impact in both tumorigenesis and tumor progression. We also discuss potential niche-specific epigenetic biomarkers to improve the prognosis and clinical treatment of cancer patients.


Subject(s)
Epigenesis, Genetic , Myeloid Cells/metabolism , Neoplasms/genetics , Stromal Cells/metabolism , Tumor Escape/genetics , Tumor Microenvironment/genetics , Disease Progression , Gene Expression , Humans , Myeloid Cells/immunology , Neoplasms/immunology , Stromal Cells/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology
14.
J Clin Immunol ; 36 Suppl 1: 48-56, 2016 05.
Article in English | MEDLINE | ID: mdl-26984849

ABSTRACT

Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.


Subject(s)
Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Epigenesis, Genetic , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Agammaglobulinemia/metabolism , Animals , Antibody Affinity/genetics , Antibody Affinity/immunology , Antibody Formation/genetics , Antibody Formation/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , DNA Methylation , Histones/metabolism , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mutation , Plasma Cells/cytology , Plasma Cells/immunology , Plasma Cells/metabolism
15.
Nucleic Acids Res ; 42(1): 249-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24097438

ABSTRACT

Epstein-Barr virus (EBV) infects and transforms human primary B cells inducing indefinite proliferation. To investigate the potential participation of chromatin mechanisms during the EBV-mediated transformation of resting B cells we performed an analysis of global changes in histone modifications. We observed a remarkable decrease and redistribution of heterochromatin marks including H4K20me3, H3K27me3 and H3K9me3. Loss of H4K20me3 and H3K9me3 occurred at constitutive heterochromatin repeats. For H3K27me3 and H3K9me3, comparison of ChIP-seq data revealed a decrease in these marks in thousands of genes, including clusters of HOX and ZNF genes, respectively. Moreover, DNase-seq data comparison between resting and EBV-transformed B cells revealed increased endonuclease accessibility in thousands of genomic sites. We observed that both loss of H3K27me3 and increased accessibility are associated with transcriptional activation. These changes only occurred in B cells transformed with EBV and not in those stimulated to proliferate with CD40L/IL-4, despite their similarities in the cell pathways involved and proliferation rates. In fact, B cells infected with EBNA-2 deficient EBV, which have much lower proliferation rates, displayed similar decreases for heterochromatic histone marks. Our study describes a novel phenomenon related to transformation of B cells, and highlights its independence of the pure acquisition of proliferation.


Subject(s)
B-Lymphocytes/virology , Herpesvirus 4, Human/physiology , Heterochromatin/metabolism , Transformation, Genetic , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Proliferation , Histones/metabolism , Humans
16.
Nucleic Acids Res ; 42(17): 11025-39, 2014.
Article in English | MEDLINE | ID: mdl-25200074

ABSTRACT

MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL.


Subject(s)
B-Lymphocytes/virology , Cell Transformation, Viral/genetics , Epigenesis, Genetic , Herpesvirus 4, Human/physiology , Lymphoma, B-Cell/virology , MicroRNAs/metabolism , NF-kappa B/metabolism , B-Lymphocytes/metabolism , Cell Line, Tumor , Cells, Cultured , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Transcription, Genetic
17.
Nucleic Acids Res ; 40(5): 1954-68, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22086955

ABSTRACT

Transcription factor-induced lineage reprogramming or transdifferentiation experiments are essential for understanding the plasticity of differentiated cells. These experiments helped to define the specific role of transcription factors in conferring cell identity and played a key role in the development of the regenerative medicine field. We here investigated the acquisition of DNA methylation changes during C/EBPα-induced pre-B cell to macrophage transdifferentiation. Unexpectedly, cell lineage conversion occurred without significant changes in DNA methylation not only in key B cell- and macrophage-specific genes but also throughout the entire set of genes differentially methylated between the two parental cell types. In contrast, active and repressive histone modification marks changed according to the expression levels of these genes. We also demonstrated that C/EBPα and RNA Pol II are associated with the methylated promoters of macrophage-specific genes in reprogrammed macrophages without inducing methylation changes. Our findings not only provide insights about the extent and hierarchy of epigenetic events in pre-B cell to macrophage transdifferentiation but also show an important difference to reprogramming towards pluripotency where promoter DNA demethylation plays a pivotal role.


Subject(s)
Cell Transdifferentiation/genetics , DNA Methylation , Epigenesis, Genetic , Macrophages/metabolism , Precursor Cells, B-Lymphoid/metabolism , Promoter Regions, Genetic , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cells, Cultured , Histones/metabolism , Macrophages/cytology , Mice , Precursor Cells, B-Lymphoid/cytology , p300-CBP Transcription Factors/metabolism
18.
Genome Res ; 20(2): 170-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20028698

ABSTRACT

Monozygotic (MZ) twins are partially concordant for most complex diseases, including autoimmune disorders. Whereas phenotypic concordance can be used to study heritability, discordance suggests the role of non-genetic factors. In autoimmune diseases, environmentally driven epigenetic changes are thought to contribute to their etiology. Here we report the first high-throughput and candidate sequence analyses of DNA methylation to investigate discordance for autoimmune disease in twins. We used a cohort of MZ twins discordant for three diseases whose clinical signs often overlap: systemic lupus erythematosus (SLE), rheumatoid arthritis, and dermatomyositis. Only MZ twins discordant for SLE featured widespread changes in the DNA methylation status of a significant number of genes. Gene ontology analysis revealed enrichment in categories associated with immune function. Individual analysis confirmed the existence of DNA methylation and expression changes in genes relevant to SLE pathogenesis. These changes occurred in parallel with a global decrease in the 5-methylcytosine content that was concomitantly accompanied with changes in DNA methylation and expression levels of ribosomal RNA genes, although no changes in repetitive sequences were found. Our findings not only identify potentially relevant DNA methylation markers for the clinical characterization of SLE patients but also support the notion that epigenetic changes may be critical in the clinical manifestations of autoimmune disease.


Subject(s)
DNA Methylation , Diseases in Twins/genetics , Lupus Erythematosus, Systemic/genetics , Twins, Monozygotic/genetics , 5-Methylcytosine/chemistry , Arthritis, Rheumatoid/genetics , Autoimmune Diseases/genetics , Cohort Studies , CpG Islands/genetics , Dermatomyositis/genetics , Female , Genes, rRNA , Humans , Male , Promoter Regions, Genetic , Sequence Analysis, DNA/methods
19.
Rheumatol Immunol Res ; 3(3): 103-110, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36788968

ABSTRACT

In just a few years, the number of epigenetic studies in autoimmune rheumatic and inflammatory diseases has greatly increased. This is in part due to the need of identifying additional determinants to genetics to explain the pathogenesis and development of these disorders. In this regard, epigenetics provides potential mechanisms that determine gene function, are linked to environmental factors, and could explain a wide range of phenotypic variability among patients with these diseases. Despite the high interest and number of studies describing epigenetic alterations under these conditions and exploring their relationship to various clinical aspects, few of the proposed biomarkers have yet reached clinical practice. The potential of epigenetic markers is high, as these alterations link measurable features with a number of biological traits. In the present article, we present published studies in the field, discuss some frequent limitations in the existing research, and propose a number of considerations that should be taken into account by those starting new projects in the field, with an aim to generate biomarkers that could make it into the clinics.

20.
Cell Rep ; 38(3): 110244, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045292

ABSTRACT

The active form of vitamin D, 1,25-dihydroxyvitamin D3, induces a stable tolerogenic phenotype in dendritic cells (DCs). This process involves the vitamin D receptor (VDR), which translocates to the nucleus, binds its cognate genomic sites, and promotes epigenetic and transcriptional remodeling. In this study, we report the occurrence of vitamin D-specific DNA demethylation and transcriptional activation at VDR binding sites associated with the acquisition of tolerogenesis in vitro. Differentiation to tolerogenic DCs associates with activation of the IL-6-JAK-STAT3 pathway. We show that JAK2-mediated STAT3 phosphorylation is specific to vitamin D stimulation. VDR and the phosphorylated form of STAT3 interact with each other to form a complex with methylcytosine dioxygenase TET2. Most importantly, pharmacological inhibition of JAK2 reverts vitamin D-induced tolerogenic properties of DCs. This interplay among VDR, STAT3, and TET2 opens up possibilities for modulating DC immunogenic properties in clinics.


Subject(s)
DNA-Binding Proteins/immunology , Dendritic Cells/immunology , Dioxygenases/immunology , Immune Tolerance/immunology , Receptors, Calcitriol/immunology , STAT3 Transcription Factor/immunology , Cells, Cultured , DNA-Binding Proteins/metabolism , Dendritic Cells/metabolism , Dioxygenases/metabolism , Humans , Receptors, Calcitriol/metabolism , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL