Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Physiol Rev ; 99(1): 665-706, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30475656

ABSTRACT

Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.


Subject(s)
Extracellular Matrix/metabolism , Hemostasis/physiology , Neovascularization, Physiologic/physiology , Wound Healing/physiology , Animals , Blood Platelets/metabolism , Humans , Skin/metabolism , Skin/pathology
2.
Exp Dermatol ; 28(4): 485-492, 2019 04.
Article in English | MEDLINE | ID: mdl-28677217

ABSTRACT

Reactive oxygen species (ROS) impair wound healing through destructive oxidation of intracellular proteins, lipids and nucleic acids. Intracellular superoxide dismutase (SOD1) regulates ROS levels and plays a critical role in tissue homoeostasis. Recent evidence suggests that age-associated wound healing impairments may partially result from decreased SOD1 expression. We investigated the mechanistic basis by which increased oxidative stress links to age-associated impaired wound healing. Fibroblasts were isolated from unwounded skin of young and aged mice, and myofibroblast differentiation was assessed by measuring α-smooth muscle actin and collagen gel contraction. Excisional wounds were created on young and aged mice to study the healing rate, ROS levels and SOD1 expression. A mechanistic link between oxidative stress and fibroblast function was explored by assessing the TGF-ß1 signalling pathway components in young and aged mice. Age-related wounds displayed reduced myofibroblast differentiation and delayed wound healing, consistent with a decrease in the in vitro capacity for fibroblast-myofibroblast transition following oxidative stress. Young fibroblasts with normal SOD1 expression exhibited increased phosphorylation of ERK in response to elevated ROS. In contrast, aged fibroblasts with reduced SOD1 expression displayed a reduced capacity to modulate intracellular ROS. Collectively, age-associated wound healing impairments are associated with fibroblast dysfunction that is likely the result of decreased SOD1 expression and subsequent dysregulation of intracellular ROS. Strategies targeting these mechanisms may suggest a new therapeutic approach in the treatment of chronic non-healing wounds in the aged population.


Subject(s)
Aging/metabolism , Fibroblasts/physiology , Superoxide Dismutase-1/deficiency , Wound Healing , Animals , Cell Differentiation , MAP Kinase Signaling System , Male , Mice, Inbred C57BL , Oxidative Stress
3.
Wound Repair Regen ; 26(3): 300-305, 2018 05.
Article in English | MEDLINE | ID: mdl-30152571

ABSTRACT

Chronic wounds are a significant medical and economic problem worldwide. Individuals over the age of 65 are particularly vulnerable to pressure ulcers and impaired wound healing. With this demographic growing rapidly, there is a need for effective treatments. We have previously demonstrated that defective hypoxia signaling through destabilization of the master hypoxia-inducible factor 1α (HIF-1α) underlies impairments in both aging and diabetic wound healing. To stabilize HIF-1α, we developed a transdermal delivery system of the Food and Drug Administration-approved small molecule deferoxamine (DFO) and found that transdermal DFO could both prevent and treat ulcers in diabetic mice. Here, we demonstrate that transdermal DFO can similarly prevent pressure ulcers and normalize aged wound healing. Enhanced wound healing by DFO is brought about by stabilization of HIF-1α and improvements in neovascularization. Transdermal DFO can be rapidly translated into the clinic and may represent a new approach to prevent and treat pressure ulcers in aged patients.


Subject(s)
Deferoxamine/pharmacology , Pressure Ulcer/prevention & control , Siderophores/pharmacology , Wound Healing/drug effects , Administration, Cutaneous , Animals , Deferoxamine/administration & dosage , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Pressure Ulcer/physiopathology , Siderophores/administration & dosage , Wound Healing/physiology
4.
Proc Natl Acad Sci U S A ; 112(1): 94-9, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535360

ABSTRACT

There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.


Subject(s)
Deferoxamine/therapeutic use , Diabetes Complications/drug therapy , Diabetes Complications/prevention & control , Diabetes Mellitus, Experimental/drug therapy , Pressure/adverse effects , Ulcer/drug therapy , Administration, Cutaneous , Animals , Apoptosis/drug effects , Deferoxamine/administration & dosage , Deferoxamine/pharmacology , Dermis/blood supply , Dermis/drug effects , Dermis/pathology , Diabetes Complications/pathology , Diabetes Mellitus, Experimental/pathology , Drug Delivery Systems , Mice, Inbred C57BL , Necrosis , Neovascularization, Physiologic/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Ulcer/pathology , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/drug effects
5.
Stem Cells ; 34(6): 1702-7, 2016 06.
Article in English | MEDLINE | ID: mdl-26991945

ABSTRACT

Brain tumor-initiating cells (BTICs) are self-renewing multipotent cells critical for tumor maintenance and growth. Using single-cell microfluidic profiling, we identified multiple subpopulations of BTICs coexisting in human glioblastoma, characterized by distinct surface marker expression and single-cell molecular profiles relating to divergent bulk tissue molecular subtypes. These data suggest BTIC subpopulation heterogeneity as an underlying source of intra-tumoral bulk tissue molecular heterogeneity, and will support future studies into BTIC subpopulation-specific therapies. Stem Cells 2016;34:1702-1707.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Glioblastoma/genetics , Humans , Phenotype , Single-Cell Analysis , Transcription, Genetic
6.
Am J Pathol ; 185(10): 2607-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26079815

ABSTRACT

Stem cells and progenitor cells are integral to tissue homeostasis and repair. They contribute to health through their ability to self-renew and commit to specialized effector cells. Recently, defects in a variety of progenitor cell populations have been described in both preclinical and human diabetes. These deficits affect multiple aspects of stem cell biology, including quiescence, renewal, and differentiation, as well as homing, cytokine production, and neovascularization, through mechanisms that are still unclear. More important, stem cell aberrations resulting from diabetes have direct implications on tissue function and seem to persist even after return to normoglycemia. Understanding how diabetes alters stem cell signaling and homeostasis is critical for understanding the complex pathophysiology of many diabetic complications. Moreover, the success of cell-based therapies will depend on a more comprehensive understanding of these deficiencies. This review has three goals: to analyze stem cell pathways dysregulated during diabetes, to highlight the effects of hyperglycemic memory on stem cells, and to define ways of using stem cell therapy to overcome diabetic complications.


Subject(s)
Cell Differentiation/physiology , Cell- and Tissue-Based Therapy , Diabetes Complications/therapy , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Diabetes Complications/metabolism , Humans , Signal Transduction/physiology
7.
Exp Dermatol ; 25(3): 206-11, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26663425

ABSTRACT

Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-ß1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.


Subject(s)
Aging , Fibroblasts/drug effects , Neovascularization, Physiologic , Superoxide Dismutase/deficiency , Wound Healing , Animals , Antioxidants/metabolism , Cell Proliferation , Fibroblasts/cytology , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neutrophils/cytology , Oxidative Stress , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism
8.
Stem Cells ; 32(5): 1347-60, 2014 May.
Article in English | MEDLINE | ID: mdl-24446236

ABSTRACT

Fibrocytes are a unique population of circulating cells reported to exhibit characteristics of both hematopoietic and mesenchymal cells, and play an important role in wound healing. However, putative fibrocytes have been found to lose expression of hematopoietic surface markers such as CD45 during differentiation, making it difficult to track these cells in vivo with conventional methodologies. In this study, to distinguish hematopoietic and nonhematopoietic cells without surface markers, we took advantage of the gene vav 1, which is expressed solely on hematopoietic cells but not on other cell types, and established a novel transgenic mouse, in which hematopoietic cells are irreversibly labeled with green fluorescent protein and nonhematopoietic cells with red fluorescent protein. Use of single-cell transcriptional analysis in this mouse model revealed two discrete types of collagen I (Col I) expressing cells of hematopoietic lineage recruited into excisional skin wounds. We confirmed this finding on a protein level, with one subset of these Col I synthesizing cells being CD45+ and CD11b+, consistent with the traditional definition of a fibrocyte, while another was CD45- and Cd11b-, representing a previously unidentified population. Both cell types were found to initially peak, then reduce posthealing, consistent with a disappearance from the wound site and not a loss of identifying surface marker expression. Taken together, we have unambiguously identified two cells of hematopoietic origin that are recruited to the wound site and deposit collagen, definitively confirming the existence and natural time course of fibrocytes in cutaneous healing.


Subject(s)
Fibroblasts/cytology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Wound Healing , Animals , CD11b Antigen/metabolism , Cell Tracking/methods , Cells, Cultured , Collagen Type I/metabolism , Fibroblasts/metabolism , Fibroblasts/transplantation , Gene Expression/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Immunoblotting , Immunohistochemistry , Leukocyte Common Antigens/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice, Transgenic , Microscopy, Confocal , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-vav/genetics , Reverse Transcriptase Polymerase Chain Reaction , Single-Cell Analysis/methods , Transforming Growth Factor beta1/pharmacology , Wounds and Injuries/therapy , Red Fluorescent Protein
9.
Stem Cells ; 31(1): 104-16, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22948863

ABSTRACT

Multipotential stromal cells or mesenchymal stem cells (MSCs) have been proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells postimplantation. This cell death in part is due to ubiquitous nonspecific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Furthermore, tethering EGF (tEGF) onto a two-dimensional surface altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived preosteoblasts showed increased Fas levels and became more susceptible to FasL-induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation, and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function.


Subject(s)
Apoptosis/physiology , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Fas Ligand Protein/metabolism , Mesenchymal Stem Cells/metabolism , Adipocytes/metabolism , Biocompatible Materials , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Line , Cell Proliferation , Enzyme Activation , Epidermal Growth Factor/pharmacology , Humans , Osteoblasts/metabolism
10.
Nat Biotechnol ; 41(5): 652-662, 2023 05.
Article in English | MEDLINE | ID: mdl-36424488

ABSTRACT

'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.


Subject(s)
Bandages , Wearable Electronic Devices , Mice , Animals , Wound Healing , Skin , Monitoring, Physiologic
11.
Invest New Drugs ; 30(1): 144-56, 2012 Feb.
Article in English | MEDLINE | ID: mdl-20924644

ABSTRACT

BACKGROUND: Interstitial hypertension is responsible for poor capillary blood flow and hampered drug delivery. The efficacy of combined sorafenib/bevacizumab treatment given according to different administration schedules has been evaluated by measuring both interstitial pressure (IP) and quantitative dynamic contrast-enhanced ultrasonography (DCE-US) parameters in melanoma-bearing mice. MATERIAL AND METHODS: [corrected] Sixty mice were xenografted with B16F10 melanoma. Animals received a daily administration over 4 days (D0 to D3) of either sorafenib at 30 mg/kg, bevacizumab at 2.5 mg/kg alone, or different schedules of combined treatments. Perfusion parameters determined using an Aplio® sonograph (Toshiba) with SonoVue® contrast agent (Bracco) were compared to IP measurements using fiberoptic probes (Samba®) at D0, D2, D4, D8. RESULTS: The mean baseline IP values ranged between 6.55 and 31.29 mmHg in all the groups. A transient IP decrease occurred at D2 in all treated groups, and especially in the concomitant group which exhibited a significant IP reduction compared to D0. A significant decrease in both the peak intensity and the area under the curve was observed at D4 in the group with concomitant administration of both molecules which yielded maximal inhibition of the tumor volume and the number of vessels. No correlation was found between IP values and volume or perfusion parameters, indicating complex relationships between IP and vascularization. No IP gradients were found between the center and the periphery but IP values in these two regions were significantly correlated (R = 0.93). CONCLUSION: The results suggest that IP variations could be predictive of vascular changes and that one single IP measurement is sufficient to fully characterize the whole tumor.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzenesulfonates/administration & dosage , Extracellular Fluid/metabolism , Melanoma, Experimental/drug therapy , Neovascularization, Pathologic/prevention & control , Perfusion Imaging , Pyridines/administration & dosage , Animals , Bevacizumab , Contrast Media , Drug Administration Schedule , Female , Fiber Optic Technology , Melanoma, Experimental/blood supply , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/metabolism , Niacinamide/analogs & derivatives , Perfusion Imaging/methods , Phenylurea Compounds , Phospholipids , Pressure , Regional Blood Flow , Sorafenib , Sulfur Hexafluoride , Time Factors , Transducers, Pressure , Ultrasonography, Doppler
12.
Adv Wound Care (New Rochelle) ; 11(10): 511-523, 2022 10.
Article in English | MEDLINE | ID: mdl-34544267

ABSTRACT

Objective: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that affects 63 in every 100,000 Americans. Its etiology remains unknown, although inflammatory pathways appear to be important. Given the dynamic environment of the lung, we examined the significance of mechanotransduction on both inflammatory and fibrotic signaling during IPF. Innovation: Mechanotransduction pathways have not been thoroughly examined in the context of lung disease, and pharmacologic approaches for IPF do not currently target these pathways. The interplay between mechanical strain and inflammation in pulmonary fibrosis remains incompletely understood. Approach: In this study, we used conditional KO mice to block mechanotransduction by knocking out Focal Adhesion Kinase (FAK) expression in fibroblasts, followed by induction of pulmonary fibrosis using bleomycin. We examined both normal human and human IPF fibroblasts and used immunohistochemistry, quantitative real-time polymerase chain reaction, and Western Blot to evaluate the effects of FAK inhibitor (FAK-I) on modulating fibrotic and inflammatory genes. Results: Our data indicate that the deletion of FAK in mice reduces expression of fibrotic and inflammatory genes in lungs. Similarly, mechanical straining in normal human lung fibroblasts activates inflammatory and fibrotic pathways. The FAK inhibition decreases these signals but has a less effect on IPF fibroblasts as compared with normal human fibroblasts. Conclusion: Administering FAK-I at early stages of fibrosis may attenuate the FAK-mediated fibrotic response pathway in IPF, potentially mediating disease progression.


Subject(s)
Idiopathic Pulmonary Fibrosis , Animals , Bleomycin/metabolism , Bleomycin/pharmacology , Fibroblasts/metabolism , Fibrosis , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Mechanotransduction, Cellular , Mice
13.
Tissue Eng Part A ; 27(11-12): 844-856, 2021 06.
Article in English | MEDLINE | ID: mdl-33789446

ABSTRACT

Burn scars and scar contractures cause significant morbidity for patients. Recently, cell-based therapies have been proposed as an option for improving healing and reducing scarring after burn injury, through their known proangiogenic and immunomodulatory paracrine effects. Our laboratory has developed a pullulan-collagen hydrogel that, when seeded with mesenchymal stem cells (MSCs), improves cell viability and augments their proangiogenic capacity in vivo. Concurrently, recent research suggests that prospective isolation of cell subpopulations with desirable transcriptional profiles can be used to further improve cell-based therapies. In this study, we examined whether adipose-derived stem cell (ASC)-seeded hydrogels could improve wound healing following thermal injury using a murine contact burn model. Partial thickness contact burns were created on the dorsum of mice. On days 5 and 10 following injury, burns were debrided and received either ASC hydrogel, ASC injection alone, hydrogel alone, or no treatment. On days 10 and 25, burns were harvested for histologic and molecular analysis. This experiment was repeated using CD26+/CD55+ FACS-enriched ASCs to further evaluate the regenerative potential of ASCs in wound healing. ASC hydrogel-treated burns demonstrated accelerated time to reepithelialization, greater vascularity, and increased expression of the proangiogenic genes MCP-1, VEGF, and SDF-1 at both the mRNA and protein level. Expression of the profibrotic gene Timp1 and proinflammatory gene Tnfa was downregulated in ASC hydrogel-treated burns. ASC hydrogel-treated burns exhibited reduced scar area compared to hydrogel-treated and control wounds, with equivalent scar density. CD26+/CD55+ ASC hydrogel treatment resulted in accelerated healing, increased dermal appendage count, and improved scar quality with a more reticular collagen pattern. Here we find that ASC hydrogel therapy is effective for treating burns, with demonstrated proangiogenic, fibromodulatory, and immunomodulatory effects. Enrichment for CD26+/CD55+ ASCs has additive benefits for tissue architecture and collagen remodeling postburn injury. Research is ongoing to further facilitate clinical translation of this promising therapeutic approach. Impact statement Burns remain a significant public health burden. Stem cell therapy has gained attention as a promising approach for treating burns. We have developed a pullulan-collagen biomimetic hydrogel scaffold that can be seeded with adipose-derived stem cells (ASCs). We assessed the delivery and activity of our scaffold in a murine contact burn model. Our results suggest that localized delivery of ASC hydrogel treatment is a promising approach for the treatment of burn wounds, with the potential for rapid clinical translation. We believe our work will have broad implications for both hydrogel therapeutics and regenerative medicine and will be of interest to the general scientific community.


Subject(s)
Burns , Mesenchymal Stem Cells , Adipose Tissue , Animals , Burns/therapy , Collagen , Glucans , Humans , Hydrogels/pharmacology , Mice , Wound Healing
14.
Mol Cancer Ther ; 19(2): 697-705, 2020 02.
Article in English | MEDLINE | ID: mdl-31658961

ABSTRACT

After mastectomy, breast reconstruction is increasingly performed using autologous tissue with the aim of improving quality of life. During this procedure, autologous tissue is excised, relocated, and reattached using microvascular anastomoses at the site of the extirpated breast. The period during which the tissue is ex vivo may allow genetic modification without any systemic exposure to the vector. Could such access permit delivery of therapeutic agents using the tissue flap as a vehicle? Such delivery may be more targeted and oncologically efficient than systemic therapy, and avoid systemic complications. The cytokine IFNγ has antitumor effects, and systemic toxicity could be circumvented by localized delivery of the IFNγ gene via gene therapy to autologous tissue used for breast reconstruction, which then releases IFNγ and exerts antitumor effects. In a rat model of loco-regional recurrence (LRR) with MADB-106-Luc and MAD-MB-231-Luc breast cancer cells, autologous tissue was transduced ex vivo with an adeno-associated viral vector encoding IFNγ. The "Therapeutic Reconstruction" released IFNγ at the LRR site and eliminated cancer cells, significantly decreased tumor burden, and increased survival compared with sham reconstruction (P <0.05). Mechanistically, localized IFNγ immunotherapy stimulated M1 macrophages to target cancer cells within the regional confines of the modified tumor environment. This concept of "Therapeutic Breast Reconstruction" using ex vivo gene therapy of autologous tissue offers a new application for immunotherapy in breast cancer with a dual therapeutic effect of both reconstructing the ablative defect and delivering local adjuvant immunotherapy.


Subject(s)
Breast Neoplasms/surgery , Genetic Therapy/methods , Immunotherapy/methods , Interferon-gamma/immunology , Mammaplasty/methods , Peptide Fragments/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Rats , Rats, Inbred F344
15.
Tissue Eng Part A ; 25(1-2): 44-54, 2019 01.
Article in English | MEDLINE | ID: mdl-29644938

ABSTRACT

In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Angiopathies , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , MicroRNAs/antagonists & inhibitors , Oligonucleotides, Antisense/pharmacology , Wound Healing/drug effects , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/genetics , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , NIH 3T3 Cells , Oligonucleotides, Antisense/genetics , Wound Healing/genetics
16.
J Control Release ; 308: 232-239, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31299261

ABSTRACT

Chronic wounds remain a significant burden to both the healthcare system and individual patients, indicating an urgent need for new interventions. Deferoxamine (DFO), an iron-chelating agent clinically used to treat iron toxicity, has been shown to reduce oxidative stress and increase hypoxia-inducible factor-1 alpha (HIF-1α) activation, thereby promoting neovascularization and enhancing regeneration in chronic wounds. However due to its short half-life and adverse side effects associated with systemic absorption, there is a pressing need for targeted DFO delivery. We recently published a preclinical proof of concept drug delivery system (TDDS) which showed that transdermally applied DFO is effective in improving chronic wound healing. Here we present an enhanced TDDS (eTDDS) comprised exclusively of FDA-compliant constituents to optimize drug release and expedite clinical translation. We evaluate the eTDDS to the original TDDS and compare this with other commonly used delivery methods including DFO drip-on and polymer spray applications. The eTDDS displayed excellent physicochemical characteristics and markedly improved DFO delivery into human skin when compared to other topical application techniques. We demonstrate an accelerated wound healing response with the eTDDS treatment resulting in significantly increased wound vascularity, dermal thickness, collagen deposition and tensile strength. Together, these findings highlight the immediate clinical potential of DFO eTDDS to treating diabetic wounds. Further, the topical drug delivery platform has important implications for targeted pharmacologic therapy of a wide range of cutaneous diseases.


Subject(s)
Deferoxamine/administration & dosage , Drug Delivery Systems , Siderophores/administration & dosage , Wound Healing/drug effects , Administration, Cutaneous , Animals , Collagen/metabolism , Deferoxamine/pharmacology , Drug Liberation , Humans , Male , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Siderophores/pharmacology , Skin/drug effects , Skin/pathology
17.
Adv Wound Care (New Rochelle) ; 7(10): 323-332, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30374417

ABSTRACT

Objective: Sickle cell ulcers (SCUs) are a devastating comorbidity affecting patients with sickle cell disease (SCD). SCUs form over the medial or lateral malleoli of the lower extremity, are slow to heal, and prone to recidivism. Some SCUs may never heal, leading to chronic pain and foot deformities. There is no specific and effective therapy for SCUs. Systemic deferoxamine (DFO) has been demonstrated to prevent some of the sequelae of SCD by chelating iron. In this study, we tested the ability of DFO delivered via a transdermal delivery system (DFO-TDDS) to accelerate healing in a murine model of SCU. Approach: Excisional wounds were created in a transgenic murine model of SCD expressing >99% human sickle hemoglobin, and healing rates were compared with wounds in wild-type mice. Next, excisional wounds in SCD mice were treated with DFO-TDDS, DFO injection, or left untreated. Wound closure rates, histology, and iron in the healed wounds were analyzed. Results: Wounds in SCD mice healed significantly slower than wild-type mice (***p < 0.001). DFO-TDDS-treated wounds demonstrated significantly accelerated time to closure, reduced size, and improved wound remodeling compared with untreated wounds (***p < 0.001) and DFO injection treatment (*p < 0.05). DFO released from the TDDS into wounds resulted in chelation of excessive dermal-free iron. Innovation: DFO-TDDS is a novel therapeutic that is effective in healing wounds in sickle cell mice. Conclusion: DFO-TDDS significantly accelerates healing of murine SCUs by chelation of excessive free iron and is currently manufactured in an FDA-compliant facility to be translated for treating human SCUs.

18.
Adv Healthc Mater ; 7(17): e1800432, 2018 09.
Article in English | MEDLINE | ID: mdl-30004192

ABSTRACT

Chronic diabetic ulcers are a common complication in patients with diabetes, often leading to lower limb amputations and even mortality. Stem cells have shown promise in promoting cutaneous wound healing by modulating inflammation, angiogenesis, and re-epithelialization. However, more effective delivery and engraftment strategies are needed to prolong transplanted stem cell lifespan and their pro-healing functions in a chronic wound environment to improve skin regeneration. In this study, an injectable poly(ethylene glycol) (PEG)-gelatin-based hydrogel system is examined to create a functional stem cell niche for the delivery of adipose-derived stem cells (ASCs) into diabetic wounds. Human ASCs are encapsulated into the in situ crosslinked hydrogels and cultured in a 3D topography. The encapsulated cells are well attached and spread inside the hydrogels, retaining viability, proliferation, and metabolic activity up to three weeks in vitro. Allogeneic ASCs are delivered to diabetic wounds by this hydrogel vehicle. It is found that stem cell retention is significantly improved in vivo with vehicle-mediated delivery. The ASC-hydrogel-based treatment decreases inflammatory cell infiltration, enhances neovascularization, and remarkably accelerates wound closure in diabetic mice. Together, these findings suggest this conveniently-applicable ASC-hydrogel-based skin substitute provides a promising potential for the treatment of chronic diabetic wounds.


Subject(s)
Skin, Artificial , Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Diabetes Mellitus, Experimental , Female , Humans , Hydrogels/chemistry , Male , Mice , Skin/cytology , Stem Cell Transplantation , Wound Healing/physiology
19.
Curr Pathobiol Rep ; 5(4): 333-342, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30288366

ABSTRACT

PURPOSE OF REVIEW: Macrophages alter their responses during the temporal stages of wound healing. During the inflammatory phase macrophages perform phagocytosis. During neovascularization macrophages activate angiogenesis. In the proliferation phase of wound healing, macrophages deposit extracellular matrix and during wound resolution macrophages phagocytize excessive cellular components. This review addresses how these changing phenotypes affect skin repair and disease. RECENT FINDINGS: Macrophages can determine the outcome of repair and can shift the normal wound healing response into fibrosis or chronic wounds. Emerging single cell technologies for the first time provide us with tools to uncover macrophage origin, heterogeneity and function. SUMMARY: Macrophages may exist as one population where all cells alter their phenotype in response to signals from the microenvironment. Alternatively, macrophages may exist as distinct subsets that can control wound outcomes. A clarified understanding will strengthen our knowledge of skin biology and aid in the development of wound healing therapies.

20.
Stem Cell Res Ther ; 8(1): 193, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874184

ABSTRACT

BACKGROUND: Transplantation of mesenchymal stem cells (MSC) has been proposed to improve wound healing. However, as these cells only transiently survive in the implantation site, the mechanisms underlying this beneficial healing response are associated with restorative paracrine effects of MSC matricellular factors on resident stromal cells. However, this requires that the recipient has a robust reservoir of viable cells. Here, we examine the influence of MSCs on the behavior of cotransplanted fibroblasts, in a manner to provide augmented cellular reserve to debilitated individuals, specifically focusing on matrix remodeling following in-vivo wounding. METHODS: Using a Hylan-A dermal filler hydrogel containing collagen I and tenascin-C for delivery and increased survival of transplanted cells, we find that cotransplantation of MSCs with fibroblasts reduces scarring. RESULTS: Transplanted xenogeneic MSCs augmented fibroblast proliferation, migration, and extracellular matrix deposition critical for wound closure, and reduced inflammation following wounding. MSCs also corrected matrix remodeling by CXCR3-deficient fibroblasts which otherwise led to hypertrophic scarring. This effect was superior to MSC or fibroblast transplantation alone. CONCLUSIONS: Taken together, these data suggest that MSCs, even if eventually rejected, transplanted with fibroblasts normalize matrix regeneration during healing. The current study provides insight into cellular therapies as a viable method for antifibrotic treatment and demonstrates that even transiently engrafted cells can have a long-term impact via matrix modulation and education of other tissue cells.


Subject(s)
Cicatrix, Hypertrophic/prevention & control , Fibroblasts/transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Surgical Wound/therapy , Wound Healing , Animals , Cell Communication , Cell- and Tissue-Based Therapy/methods , Cellulose/administration & dosage , Cicatrix, Hypertrophic/metabolism , Coculture Techniques , Drug Combinations , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Female , Fibroblasts/cytology , Fibroblasts/immunology , Fibroblasts/metabolism , Gene Deletion , Gene Expression , Hexamethonium Compounds/administration & dosage , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/analogs & derivatives , Male , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Primary Cell Culture , Receptors, CXCR3/deficiency , Receptors, CXCR3/genetics , Skin/injuries , Skin/metabolism , Surgical Wound/metabolism , Surgical Wound/pathology , Tantalum/administration & dosage , Thrombin/administration & dosage , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL