Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Immunol ; 210(7): 991-1003, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36881882

ABSTRACT

Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.


Subject(s)
NF-kappa B , Pancreatic Neoplasms , Mice , Animals , NF-kappa B/metabolism , Cell Line, Tumor , T-Lymphocytes/metabolism , Inhibitor of Apoptosis Proteins , Apoptosis , Immunity
2.
Open Biol ; 11(11): 210245, 2021 11.
Article in English | MEDLINE | ID: mdl-34784792

ABSTRACT

Radiation has been a pillar of cancer therapy for decades. The effects of radiation on the anti-tumour immune response are variable across studies and have not been explicitly defined in poorly immunogenic tumour types. Here, we employed combination checkpoint blockade immunotherapy with stereotactic body radiation therapy and examined the effect on tumour growth and immune infiltrates in subcutaneous and orthotopic mouse models of pancreatic cancer. Although immune checkpoint blockade and radiation were ineffective alone, their combination produced a modest growth delay in both irradiated and non-irradiated tumours that corresponded with significant increases in CD8+ T cells, CD4+ T cells and tumour-specific T cells as identified by IFNγ ELISpot. We conclude that radiation enhances priming of tumour-specific T cells in poorly immunogenic tumours and that the frequency of these T cells can be further increased by combination with immune checkpoint blockade.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immune Checkpoint Inhibitors/administration & dosage , Pancreatic Neoplasms/therapy , Radiosurgery/methods , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/radiation effects , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/radiation effects , Cell Line, Tumor , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/pharmacology , Mice , Pancreatic Neoplasms/immunology , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
3.
Cancer Discov ; 11(10): 2564-2581, 2021 10.
Article in English | MEDLINE | ID: mdl-33941591

ABSTRACT

CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Aminopyridines/therapeutic use , Animals , Benzimidazoles/therapeutic use , Breast Neoplasms/pathology , Breast Neoplasms, Male/drug therapy , Breast Neoplasms, Male/pathology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Piperazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyridines/therapeutic use
4.
Sci Transl Med ; 13(594)2021 05 19.
Article in English | MEDLINE | ID: mdl-34011631

ABSTRACT

Loss of major histocompatibility complex (MHC) class I and interferon-γ (IFN-γ) sensing are major causes of primary and acquired resistance to checkpoint blockade immunotherapy. Thus, additional treatment options are needed for tumors that lose expression of MHC class I. The cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) regulate classical and alternative nuclear factor κB (NF-κB) signaling. Induction of noncanonical NF-κB signaling with cIAP1/2 antagonists mimics costimulatory signaling, augmenting antitumor immunity. We show that induction of noncanonical NF-κB signaling induces T cell-dependent immune responses, even in ß2-microglobulin (ß2M)-deficient tumors, demonstrating that direct CD8 T cell recognition of tumor cell-expressed MHC class I is not required. Instead, T cell-produced lymphotoxin reprograms both mouse and human macrophages to be tumoricidal. In wild-type mice, but not mice incapable of antigen-specific T cell responses, cIAP1/2 antagonism reduces tumor burden by increasing phagocytosis of live tumor cells. Efficacy is augmented by combination with CD47 blockade. Thus, activation of noncanonical NF-κB stimulates a T cell-macrophage axis that curtails growth of tumors that are resistant to checkpoint blockade because of loss of MHC class I or IFN-γ sensing. These findings provide a potential mechanism for controlling checkpoint blockade refractory tumors.


Subject(s)
Cellular Reprogramming , Histocompatibility Antigens Class I , Immunotherapy , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Neoplasms/therapy , Phagocytes , T-Lymphocytes/immunology , Animals , Humans , Interferon-gamma , Macrophages , Mice , NF-kappa B , Neoplasms/immunology , Signal Transduction
5.
Nat Cancer ; 2(4): 444-456, 2021 04.
Article in English | MEDLINE | ID: mdl-33899001

ABSTRACT

Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.


Subject(s)
Programmed Cell Death 1 Receptor , Prostatic Neoplasms , CD8-Positive T-Lymphocytes , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Interferons/pharmacology , Male , Prostatic Neoplasms/drug therapy , RNA, Double-Stranded
6.
Oncoimmunology ; 5(5): e1065369, 2016 May.
Article in English | MEDLINE | ID: mdl-27467910

ABSTRACT

The recent approval of clincially effective immune checkpoint inhibitors illustrates the potential of cancer immunotherapy. A challenging task remains the identification of specific targets guiding immunotherapy. Facilitated by technical advances, the direct identification of physiologically relevant targets is enabled by analyzing the HLA ligandome of cancer cells. Since recent publications demonstrate the immunogenicity of ovarian cancer (OvCa), immunotherapies, including peptide-based cancer vaccines, represent a promising treatment approach. To identify vaccine peptides, we employed a combined strategy of HLA ligandomics in high-grade serous OvCa samples and immunogenicity analysis. Only few proteins were naturally presented as HLA ligands on all samples analyzed, including histone deacetylase (HDAC) 1 and 2. In vitro priming of CD8(+) T cells demonstrated that two HDAC1/2-derived HLA ligands can induce T-cell responses, capable of killing HLA-matched tumor cells. High HDAC1 expression shown by immunohistochemistry in 136 high-grade serous OvCa patients associated with significantly reduced overall survival (OS), whereas patients with high numbers of CD3(+) tumor-infiltrating lymphocytes (TILs) in the tumor epithelium and CD8(+) TILs in the tumor stroma showed improved OS. However, correlating HDAC1 expression with TILs, high levels of TILs abrogated the impact of HDAC1 on OS. This study strengthens the role of HDAC1/2 as an important tumor antigen in OvCa, demonstrating its impact on OS in a large cohort of OvCa patients. We further identified two immunogenic HDAC1-derived peptides, which frequently induce multi-functional T-cell responses in many donors, suitable for future multi-peptide vaccine trials in OvCa patients.

SELECTION OF CITATIONS
SEARCH DETAIL