ABSTRACT
Targeted grazing to control undesirable plant species is increasingly of interest across a diversity of ecosystems, particularly as an alternative or complement to widely used herbicides. However, there are limited comprehensive evaluations of targeted grazing that evaluate both invasive species management effectiveness and potential negative effects on the ecosystem. Phragmites australis, a tall-statured, dense perennial invasive grass from Eurasia, is a pervasive problem in wetlands across the North American continent. As with many invasive species where management has historically relied on herbicides and resistance is a growing concern, land managers seek viable alternatives that have minimal negative ecosystem impacts. Grazing has been used for millennia to manage native Phragmites in Europe. Similarly, in its invasive range within North America, small-scale studies suggest Phragmites may be suppressed by grazers. Yet, the effectiveness of grazing at large scales and its effects on broader ecosystem properties remain largely unknown. We evaluated the influence of targeted grazing on vegetation, soil nutrients, and water nutrients over two years in large plots (â¼300x the size of previous studies). We also tested the effects of mowing, a treatment that can be used to facilitate grazer access to large, dense Phragmites stands. In line with our predictions, we found that cattle grazing effectively suppressed invasive Phragmites over two years. Mowing reduced litter, and moderately reduced standing dead Phragmites, both of which suppress native plant germination in this system. However, these reductions in Phragmites were not accompanied by indications of native plant community recovery, as we had optimistically predicted. Despite the potential for grazing to reduce nutrient sequestration by plants and fertilize soils, we were surprised to find no clear negative effects of grazing on nutrient mobilization to groundwater or floodwater. Taken together, our findings indicate that targeted grazing, when implemented at broad scales over short time frames, is effective at achieving invasive plant management goals without sizable nutrient impacts. However, additional steps will be needed to achieve the restoration of diverse, robust native plant communities.
Subject(s)
Introduced Species , Wetlands , Animals , Poaceae , Ecosystem , Soil , Herbivory , NutrientsABSTRACT
Submerged aquatic vegetation (SAV) improves environmental conditions by acting as a sediment stabilizer and nutrient retention tool; therefore, reintroduction of SAV is a common freshwater restoration goal. Initial plant establishment is often difficult in suboptimal conditions, and planting material with specific traits may increase establishment rates. Here we evaluate the variability in plant traits based on collection location. We find consistent differences in traits of plants collected from different natural water bodies, and those differences persist in plants grown from seeds under common garden greenhouse conditions-presumably because of genetic differentiation. In three separate mesocosm experiments, we tested the interactive impacts of collection location and environmental condition (control conditions, reduced light, elevated nutrients, or a combination of reduced light and elevated nutrients) on plant reproduction and on traits that might indicate future restoration success (plant height, number of leaves, and rhizome diameter). In most cases, plant traits at the end of the experiments varied by collection location, environmental condition, and an interaction between the two. The best performing plants also depended on response variable (e.g., plant height or number of new shoots produced). Together these results suggest that unpredictable environmental conditions at restoration sites will make selection of a single high-performing plant source difficult, so we suggest incorporating a diverse set of collection locations to increase the probability of incorporating desirable traits.
Subject(s)
Ecosystem , Plants , Fresh WaterABSTRACT
The natural recolonization of native plant communities following invasive species management is notoriously challenging to predict, since outcomes can be contingent on a variety of factors including management decisions, abiotic factors, and landscape setting. The spatial scale at which the treatment is applied can also impact management outcomes, potentially influencing plant assembly processes and treatment success. Understanding the relative importance of each of these factors for plant community assembly can help managers prioritize patches where specific treatments are likely to be most successful. Here, using effects size analyses, we evaluate plant community responses following four invasive Phragmites australis management treatments (1: fall glyphosate herbicide spray, 2: summer glyphosate herbicide spray, 3: summer imazapyr herbicide spray, 4: untreated control) applied at two patch scales (12,000 m2 and 1,000 m2) and monitored for 5 years. Using variation partitioning, we then evaluated the independent and shared influence of patch scale, treatment type, abiotic factors, and landscape factors on plant community outcomes following herbicide treatments. We found that Phragmites reinvaded more quickly in large patches, particularly following summer herbicide treatments, while native plant cover and richness increased at a greater magnitude in small patches than large. Patch scale, in combination with abiotic and landscape factors, was the most important driver for most plant responses. Compared with the small plots, large patches commonly had deeper and more prolonged flooding, and were in areas with greater hydrologic disturbance in the landscape, factors associated with reduced native plant recruitment and greater Phragmites cover. Small patches were associated with less flooding and landscape disturbance, and more native plants in the surrounding landscape than large patches, factors which promoted higher native plant conservation values and greater native plant cover and richness. Herbicide type and timing accounted for very little of the variation in native plant recovery, emphasizing the greater importance of patch selection for better management outcomes. To maximize the success of treatment programs, practitioners should first manage Phragmites patches adjacent to native plant species and in areas with minimal hydrologic disturbance.
ABSTRACT
The outcomes of invasive plant removal efforts are influenced by management decisions, but are also contingent on the uncontrolled spatial and temporal context of management areas. Phragmites australis is an aggressive invader that is intensively managed in wetlands across North America. Treatment options have been understudied, and the ecological contingencies of management outcomes are poorly understood. We implemented a 5-year, multi-site experiment to evaluate six Phragmites management treatments that varied timing (summer or fall) and types of herbicide (glyphosate or imazapyr) along with mowing, plus a nonherbicide solarization treatment. We evaluated treatments for their influence on Phragmites and native plant cover and Phragmites inflorescence production. We assessed plant community trajectories and outcomes in the context of environmental factors. The summer mow, fall glyphosate spray treatment resulted in low Phragmites cover, high inflorescence reduction, and provided the best conditions for native plant recruitment. However, returning plant communities did not resemble reference sites, which were dominated by ecologically important perennial graminoids. Native plant recovery following initial Phragmites treatments was likely limited by the dense litter that resulted from mowing. After 5 years, Phragmites mortality and native plant recovery were highly variable across sites as driven by hydrology. Plots with higher soil moisture had greater reduction in Phragmites cover and more robust recruitment of natives compared with low moisture plots. This moisture effect may limit management options in semiarid regions vulnerable to water scarcity. We demonstrate the importance of replicating invasive species management experiments across sites so the contingencies of successes and failures can be better understood.