Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Genomics ; 13: 211, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22646846

ABSTRACT

BACKGROUND: Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. RESULTS: Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. CONCLUSIONS: We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.


Subject(s)
Manduca/genetics , RNA Interference , Receptors, Odorant/antagonists & inhibitors , Animals , Contig Mapping , Gene Library , Gene Transfer Techniques , Larva/genetics , Larva/metabolism , Manduca/classification , Manduca/growth & development , Phylogeny , RNA, Double-Stranded/metabolism , Receptors, Odorant/classification , Receptors, Odorant/metabolism , Transcriptome/genetics
2.
Mech Dev ; 130(4-5): 226-40, 2013.
Article in English | MEDLINE | ID: mdl-23462683

ABSTRACT

The vertebrate axial skeleton (vertebral column and ribs) is derived from embryonic structures called somites. Mechanisms of somite formation and patterning are largely conserved along the length of the body axis, but segments acquire different morphologies in part through the action of Hox transcription factors. Although Hox genes' roles in axial skeletal patterning have been extensively characterized, it is still not well understood how they interact with somite patterning pathways to regulate different vertebral morphologies. Here, we investigated the role of Hoxa-5 in after somite segmentation in chick. Hoxa-5 mRNA is expressed in posterior cervical somites, and within them is restricted mainly to a sub-domain of lateral sclerotome. RNAi-based knockdown leads to cartilage defects in lateral vertebral elements (rib homologous structures) whose morphologies vary within and outside of the Hoxa-5 expression domain. Both knockdown and misexpression suggest that Hoxa-5 acts via negative regulation of Sox-9. Further, Hoxa-5 misexpression suggests that spatial and/or temporal restriction of Hoxa-5 expression is necessary for proper vertebral morphology. Finally, the restriction of Hoxa-5 expression to lateral sclerotome, which we hypothesize is important for its patterning function, involves regulation by signaling pathways that pattern somites, Fgf-8 and Shh.


Subject(s)
Body Patterning , Cervical Vertebrae/embryology , Cervical Vertebrae/pathology , Homeodomain Proteins/metabolism , Somites/embryology , Somites/metabolism , Animals , Biomarkers/metabolism , Cartilage/embryology , Cartilage/metabolism , Cartilage/pathology , Chick Embryo , Chickens , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrogenesis/genetics , Fibroblast Growth Factor 8/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hedgehog Proteins/metabolism , Homeodomain Proteins/genetics , Paired Box Transcription Factors/metabolism , Protein Transport , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , SOX9 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL