Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Nat Chem Biol ; 20(1): 111-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985883

ABSTRACT

Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.


Subject(s)
Carbon Dioxide , Oxidoreductases , Carbon Dioxide/chemistry , Oxygen , Oxidation-Reduction , Catalytic Domain , Formates
2.
J Biol Chem ; 299(8): 105036, 2023 08.
Article in English | MEDLINE | ID: mdl-37442232

ABSTRACT

Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.


Subject(s)
Arsenic , Arsenites , Humans , Antimony , Oxidation-Reduction
3.
Infect Immun ; 91(4): e0040522, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36877064

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Among these effectors, several inclusion membrane proteins (Incs) insert in the vacuolar membrane. Here, we show that human cell lines infected by a C. trachomatis strain deficient for Inc CT288/CTL0540 (renamed IncM) displayed less multinucleation than when infected by IncM-producing strains (wild type or complemented). This indicated that IncM is involved in the ability of Chlamydia to inhibit host cell cytokinesis. The capacity of IncM to induce multinucleation in infected cells was shown to be conserved among its chlamydial homologues and appeared to require its two larger regions predicted to be exposed to the host cell cytosol. C. trachomatis-infected cells also displayed IncM-dependent defects in centrosome positioning, Golgi distribution around the inclusion, and morphology and stability of the inclusion. The altered morphology of inclusions containing IncM-deficient C. trachomatis was further affected by depolymerization of host cell microtubules. This was not observed after depolymerization of microfilaments, and inclusions containing wild-type C. trachomatis did not alter their morphology upon depolymerization of microtubules. Overall, these findings suggest that IncM may exert its effector function by acting directly or indirectly on host cell microtubules.


Subject(s)
Chlamydia Infections , Cytokinesis , Humans , Cytokinesis/physiology , Chlamydia trachomatis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , HeLa Cells , Vacuoles/metabolism , Centrosome/metabolism , Chlamydia Infections/microbiology , Host-Pathogen Interactions
4.
Int J Mol Sci ; 24(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37047219

ABSTRACT

Neisseria gonorrhoeae is an obligate human pathogenic bacterium responsible for gonorrhea, a sexually transmitted disease. The bacterial peroxidase, an enzyme present in the periplasm of this bacterium, detoxifies the cells against hydrogen peroxide and constitutes one of the primary defenses against exogenous and endogenous oxidative stress in this organism. The 38 kDa heterologously produced bacterial peroxidase was crystallized in the mixed-valence state, the active state, at pH 6.0, and the crystals were soaked with azide, producing the first azide-inhibited structure of this family of enzymes. The enzyme binds exogenous ligands such as cyanide and azide, which also inhibit the catalytic activity by coordinating the P heme iron, the active site, and competing with its substrate, hydrogen peroxide. The inhibition constants were estimated to be 0.4 ± 0.1 µM and 41 ± 5 mM for cyanide and azide, respectively. Imidazole also binds and inhibits the enzyme in a more complex mechanism by binding to P and E hemes, which changes the reduction potential of the latest heme. Based on the structures now reported, the catalytic cycle of bacterial peroxidases is revisited. The inhibition studies and the crystal structure of the inhibited enzyme comprise the first platform to search and develop inhibitors that target this enzyme as a possible new strategy against N. gonorrhoeae.


Subject(s)
Peroxidase , Peroxidases , Humans , Peroxidases/metabolism , Neisseria gonorrhoeae , Hydrogen Peroxide/metabolism , Azides/chemistry , Heme/metabolism
5.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613918

ABSTRACT

Metal-dependent formate dehydrogenases (Fdh) catalyze the reversible conversion of CO2 to formate, with unrivalled efficiency and selectivity. However, the key catalytic aspects of these enzymes remain unknown, preventing us from fully benefiting from their capabilities in terms of biotechnological applications. Here, we report a time-resolved characterization by X-ray crystallography of the Desulfovibrio vulgaris Hildenborough SeCys/W-Fdh during formate oxidation. The results allowed us to model five different intermediate structures and to chronologically map the changes occurring during enzyme reduction. Formate molecules were assigned for the first time to populate the catalytic pocket of a Fdh. Finally, the redox reversibility of DvFdhAB in crystals was confirmed by reduction and reoxidation structural studies.


Subject(s)
Formate Dehydrogenases , Metals , Formate Dehydrogenases/metabolism , Oxidation-Reduction , Catalysis , Formates/chemistry , Carbon Dioxide/chemistry
6.
J Biol Chem ; 295(16): 5377-5389, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32144208

ABSTRACT

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.


Subject(s)
Aldehyde Oxidase/metabolism , Evolution, Molecular , Liver/enzymology , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/genetics , Animals , Humans , Substrate Specificity
7.
J Biol Chem ; 292(12): 4847-4860, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28179427

ABSTRACT

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.


Subject(s)
Bacterial Proteins/metabolism , Cellulases/metabolism , Spirochaeta/metabolism , Bacterial Proteins/chemistry , Binding Sites , Carbohydrate Metabolism , Cell Wall/metabolism , Cellulases/chemistry , Cellulose/metabolism , Crystallography, X-Ray , Glucans/metabolism , Models, Molecular , Osmolar Concentration , Protein Binding , Protein Conformation , Spirochaeta/chemistry , Temperature , Xylans/metabolism
8.
Int J Mol Sci ; 19(4)2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29652801

ABSTRACT

The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.


Subject(s)
Arginine/genetics , DNA/metabolism , Lysine/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Crystallography, X-Ray , Humans , Hydrogen Bonding , Models, Molecular , Mutation , Protein Binding , Protein Structure, Secondary , Tumor Suppressor Protein p53/metabolism , Water , Zinc/chemistry
9.
Biochim Biophys Acta Bioenerg ; 1858(10): 865-872, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28801050

ABSTRACT

Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s-1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.


Subject(s)
Cytochromes c/metabolism , Electron Transport/physiology , Oxidoreductases/metabolism , Arsenites/metabolism , Betaproteobacteria/metabolism , Catalysis , Catalytic Domain/physiology , Electrons , Molybdenum/metabolism , Oxidation-Reduction , Protein Interaction Maps/physiology , Protein Subunits/metabolism
10.
Nat Chem Biol ; 11(10): 779-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26322824

ABSTRACT

Aldehyde oxidase (AOX) is a xanthine oxidase (XO)-related enzyme with emerging importance due to its role in the metabolism of drugs and xenobiotics. We report the first crystal structures of human AOX1, substrate free (2.6-Å resolution) and in complex with the substrate phthalazine and the inhibitor thioridazine (2.7-Å resolution). Analysis of the protein active site combined with steady-state kinetic studies highlight the unique features, including binding and substrate orientation at the active site, that characterize human AOX1 as an important drug-metabolizing enzyme. Structural analysis of the complex with the noncompetitive inhibitor thioridazine revealed a new, unexpected and fully occupied inhibitor-binding site that is structurally conserved among mammalian AOXs and XO. The new structural insights into the catalytic and inhibition mechanisms of human AOX that we now report will be of great value for the rational analysis of clinical drug interactions involving inhibition of AOX1 and for the prediction and design of AOX-stable putative drugs.


Subject(s)
Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Enzyme Inhibitors/metabolism , Xenobiotics/metabolism , Aldehyde Oxidase/antagonists & inhibitors , Aldehyde Oxidase/genetics , Aldehyde Oxidoreductases/antagonists & inhibitors , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Humans , Mice , Models, Molecular , Protein Binding , Protein Conformation , Species Specificity , Substrate Specificity , Xenobiotics/chemistry
11.
Drug Metab Dispos ; 44(8): 1277-85, 2016 08.
Article in English | MEDLINE | ID: mdl-26842593

ABSTRACT

Aldehyde oxidase (AOX1) is an enzyme with broad substrate specificity, catalyzing the oxidation of a wide range of endogenous and exogenous aldehydes as well as N-heterocyclic aromatic compounds. In humans, the enzyme's role in phase I drug metabolism has been established and its importance is now emerging. However, the true physiologic function of AOX1 in mammals is still unknown. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified in human AOX1. SNPs are a major source of interindividual variability in the human population, and SNP-based amino acid exchanges in AOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. For the reliable analysis of the effect of amino acid exchanges in human proteins, the existence of reproducible expression systems for the production of active protein in ample amounts for kinetic, spectroscopic, and crystallographic studies is required. In our study we report an optimized expression system for hAOX1 in Escherichia coli using a codon-optimized construct. The codon-optimization resulted in an up to 15-fold increase of protein production and a simplified purification procedure. The optimized expression system was used to study three SNPs that result in amino acid changes C44W, G1269R, and S1271L. In addition, the crystal structure of the S1271L SNP was solved. We demonstrate that the recombinant enzyme can be used for future studies to exploit the role of AOX in drug metabolism, and for the identification and synthesis of new drugs targeting AOX when combined with crystallographic and modeling studies.


Subject(s)
Aldehyde Oxidase/biosynthesis , Aldehyde Oxidase/genetics , Polymorphism, Single Nucleotide , Protein Engineering/methods , Aldehyde Oxidase/chemistry , Codon , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Enzymologic , Genotype , Humans , Kinetics , Models, Molecular , Phenotype , Protein Conformation , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Structure-Activity Relationship , Substrate Specificity
12.
Arch Toxicol ; 90(4): 753-80, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26920149

ABSTRACT

Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.


Subject(s)
Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Evolution, Molecular , Aldehyde Oxidase/genetics , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Catalysis , Crystallography, X-Ray , Escherichia coli/genetics , Humans , Inactivation, Metabolic , Mammals , Polymorphism, Single Nucleotide , Xenobiotics/metabolism , Xenobiotics/pharmacokinetics
13.
J Biol Inorg Chem ; 20(2): 209-17, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25287365

ABSTRACT

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.


Subject(s)
Aldehyde Oxidase/chemistry , Aldehyde Oxidoreductases/chemistry , Flavoproteins/chemistry , Protein Conformation , Aldehyde Oxidase/metabolism , Aldehyde Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Binding Sites , Catalytic Domain , Kinetics , Mice , Molecular Dynamics Simulation , Oxidation-Reduction , Substrate Specificity
14.
Int J Mol Sci ; 15(2): 2223-36, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24492481

ABSTRACT

The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an αßγ heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS) have been carried out. The protein crystallizes in the presence of 20% (w/v) polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K) was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 Å and belong to the C2 space group, with cell parameters a = 109.42 Å, b = 78.08 Å, c = 151.77 Å, ß = 99.77°, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an αßγ heterotrimer.


Subject(s)
Aldehyde Dehydrogenase/chemistry , Escherichia coli/enzymology , Periplasm/enzymology , Crystallography, X-Ray , Protein Conformation , Scattering, Small Angle
15.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 98-106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699971

ABSTRACT

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.


Subject(s)
Desulfovibrio vulgaris , Formate Dehydrogenases , Desulfovibrio vulgaris/enzymology , Desulfovibrio vulgaris/genetics , Formate Dehydrogenases/chemistry , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Catalytic Domain , Crystallography, X-Ray , Oxidation-Reduction , Models, Molecular , Formates/metabolism , Formates/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
J Biol Chem ; 287(48): 40690-702, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23019336

ABSTRACT

BACKGROUND: Aldehyde oxidases have pharmacological relevance, and AOX3 is the major drug-metabolizing enzyme in rodents. RESULTS: The crystal structure of mouse AOX3 with kinetics and molecular docking studies provides insights into its enzymatic characteristics. CONCLUSION: Differences in substrate and inhibitor specificities can be rationalized by comparing the AOX3 and xanthine oxidase structures. SIGNIFICANCE: The first aldehyde oxidase structure represents a major advance for drug design and mechanistic studies. Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/genetics , Aldehyde Oxidase/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Cattle , Crystallography, X-Ray , Dimerization , Humans , Kinetics , Mammals/genetics , Mice , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Substrate Specificity
17.
J Biol Chem ; 287(53): 44394-405, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23118225

ABSTRACT

Protein-protein interactions play a pivotal role in a large number of biological processes exemplified by the assembly of the cellulosome. Integration of cellulosomal components occurs through the binding of type I cohesin modules located in a non-catalytic molecular scaffold to type I dockerin modules located at the C terminus of cellulosomal enzymes. The majority of type I dockerins display internal symmetry reflected by the presence of two essentially identical cohesin-binding surfaces. Here we report the crystal structures of two novel Clostridium thermocellum type I cohesin-dockerin complexes (CohOlpC-Doc124A and CohOlpA-Doc918). The data revealed that the two dockerins, Doc918 and Doc124A, are unusual because they lack the structural symmetry required to support a dual binding mode. Thus, in both cases, cohesin recognition is dominated by residues located at positions 11, 12, and 19 of one of the dockerin binding surfaces. The alternative binding mode is not possible (Doc918) or highly limited (Doc124A) because residues that assume the critical interacting positions, when dockerins are reoriented by 180°, make steric clashes with the cohesin. In common with a third dockerin (Doc258) that also presents a single binding mode, Doc124A directs the appended cellulase, Cel124A, to the surface of C. thermocellum and not to cellulosomes because it binds preferentially to type I cohesins located at the cell envelope. Although there are a few exceptions, such as Doc918 described here, these data suggest that there is considerable selective pressure for the evolution of a dual binding mode in type I dockerins that direct enzymes into cellulosomes.


Subject(s)
Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Clostridium thermocellum/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cellulosomes/chemistry , Cellulosomes/genetics , Cellulosomes/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Clostridium thermocellum/chemistry , Clostridium thermocellum/genetics , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Cohesins
18.
Article in English | MEDLINE | ID: mdl-24316849

ABSTRACT

The modular carbohydrate-active enzyme belonging to glycoside hydrolase family 30 (GH30) from Clostridium thermocellum (CtXynGH30) is a cellulosomal protein which plays an important role in plant cell-wall degradation. The full-length CtXynGH30 contains an N-terminal catalytic module (Xyn30A) followed by a family 6 carbohydrate-binding module (CBM6) and a dockerin at the C-terminus. The recombinant protein has a molecular mass of 45 kDa. Preliminary structural characterization was carried out on Xyn30A crystallized in different conditions. All tested crystals belonged to space group P1 with one molecule in the asymmetric unit. Molecular replacement has been used to solve the Xyn30A structure.


Subject(s)
Bacterial Proteins/chemistry , Clostridium thermocellum/chemistry , Xylosidases/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridium thermocellum/enzymology , Clostridium thermocellum/genetics , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Histidine/chemistry , Histidine/genetics , Molecular Sequence Data , Oligopeptides/chemistry , Oligopeptides/genetics , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Xylosidases/genetics , Xylosidases/metabolism
19.
Int J Biol Macromol ; 224: 55-67, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36252630

ABSTRACT

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.


Subject(s)
Bacterial Proteins , Cellulosomes , Amino Acid Sequence , Bacterial Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Cohesins
20.
ACS Chem Biol ; 17(7): 1901-1909, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35766974

ABSTRACT

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.


Subject(s)
Desulfovibrio vulgaris , Desulfovibrio , Catalysis , Desulfovibrio/metabolism , Desulfovibrio vulgaris/metabolism , Dithionite , Electron Spin Resonance Spectroscopy , Formate Dehydrogenases/chemistry , Formate Dehydrogenases/metabolism , Formates , Metals , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL