ABSTRACT
BACKGROUND: Multiple myeloma (MM) is a neoplastic disorder of plasma cells interesting mainly the elderly. MM remains an incurable disease, mostly because of the strong interplay between clonal plasma cells (cPCs) and bone marrow (BM) microenvironment. Multiparameter flow cytometry (MFC) allows the simultaneous study of the cPC immunophenotype and alterations involving other cells in BM, but rarely these data are interpreted as connected. One exception to this habit are previous studies about relationship between CD117 cPC positivity and hematopoietic progenitor cell (HPC) distribution in newly diagnosed patients. Thus we were interested in verifying the distribution of BM CD34+ HPCs in healthy controls, and monoclonal gammopathy of undetermined significance (MGUS) patients and various categories of responding/relapsing MM subjects divided according to CD117 positivity. RESULTS: Our data completely agree with precedent reports as regards untreated patients. In the group with progression of disease, CD117- patients exhibited a lower CD34 + CD19-/CD34 + CD19+ ratio vs CD117+ subjects. Among CD117- cases, newly diagnosed patients exhibited differences in distribution of HPCs vs responding myeloma subjects and patients with progressive disease. These differences reached statistical significance comparing CD117- newly diagnosed with CD117- responding cases, as reflected by CD34 + CD19-/CD34 + CD19+ ratio. In turn, no differences emerged comparing CD117+ treated and untreated patients. CONCLUSIONS: We demonstrate that administration of treatment and depth of reached response/presence of relapse imply a distinct regulation in distribution of CD34+ HPC subsets in CD117- and CD117+ patients. These differences become evident comparing untreated and treated CD117- patients, but they are impossible to detect in CD117+ cases.
ABSTRACT
Thoracic aortic aneurysm (TAA) is a progressive disorder involving gradual dilation of ascending and/or descending thoracic aorta with dissection or rupture as complications. It occurs as sporadic or defined syndromes/familial forms.Genetic, molecular and cellular mechanims of sporadic TAA forms are poorly characterized and known. Thus, our interest has been focused on investigating the role of genetic variants of transforming growth factor-ß (TGF-ß) pathways in TAA risk. On the other hand, no data on the role of genetic variants of TGF-ß pathway in sporadic TAA exist until now. In addition, other cytokines, including IL-10, orchestrate TAA pathophysiology. Their balance determines the ultimate fate of the aortic wall as healing atherosclerosis or aneurysm formation. Thus, in this paper it was analyzed the role of ten polymorphisms of genes encoding TGF-ß isoforms and receptors, and IL-10 in sporadic TAA. Our study included cases affected by sporadic TAA and two control groups. The most relevant finding obtained allows us to propose that rs900 TGF-ß2 SNP is associated with sporadic TAA in women. This might open new perspectives for the analysis of sporadic TAA susceptibility factors and prevention.
Subject(s)
Aortic Aneurysm, Thoracic/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Transforming Growth Factor beta2/genetics , Adult , Aged , Female , Gene Frequency , Genotype , Humans , Interleukin-10/blood , Male , Middle Aged , Protein Isoforms/genetics , Regression Analysis , Sex FactorsABSTRACT
Tumor neoantigens (nAg) represent a promising target for cancer immunotherapy. The identification of nAgs that can generate T-cell responses and have therapeutic activity has been challenging. Here, we sought to unravel the features of nAgs required to induce tumor rejection. We selected clinically validated Great Ape-derived adenoviral vectors (GAd) as a nAg delivery system for differing numbers and combinations of nAgs. We assessed their immunogenicity and efficacy in murine models of low to high disease burden, comparing multi-epitope versus mono-epitope vaccines. We demonstrated that the breadth of immune response is critical for vaccine efficacy and having multiple immunogenic nAgs encoded in a single vaccine improves efficacy. The contribution of each single neoantigen was examined, leading to the identification of 2 nAgs able to induce CD8+ T cell-mediated tumor rejection. They were both active as individual nAgs in a setting of prophylactic vaccination, although to different extents. However, the efficacy of these single nAgs was lost in a setting of therapeutic vaccination in tumor-bearing mice. The presence of CD4+ T-cell help restored the efficacy for only the most expressed of the two nAgs, demonstrating a key role for CD4+ T cells in sustaining CD8+ T-cell responses and the necessity of an efficient recognition of the targeted epitopes on cancer cells by CD8+ T cells for an effective antitumor response. This study provides insight into understanding the determinants of nAgs relevant for effective treatment and highlights features that could contribute to more effective antitumor vaccines. See related Spotlight by Slingluff Jr, p. 382.
Subject(s)
Cancer Vaccines , Neoplasms , Mice , Animals , Tumor Burden , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Epitopes , Antigens, NeoplasmABSTRACT
Quality control testing of vaccines, including potency assessment, is critical to ensure equivalence of clinical lots. We developed a potency assay to support the clinical advancement of Nous-209, a cancer vaccine based on heterologous prime/boost administration of two multivalent viral vector products: GAd-209 and MVA-209. These consist of a mix of four Adeno (Great Ape Adenovirus; GAd) and four Modified Vaccinia Ankara (MVA) vectors respectively, each containing a different transgene encoding a synthetic polypeptide composed of antigenic peptide fragments joined one after the other. The potency assay employs quantitative Reverse Transcription PCR (RT-Q-PCR) to quantitatively measure the transcripts from the four transgenes encoded by each product in in vitro infected cells, enabling simultaneous detection. Results showcase the assay's robustness and biological relevance, as it effectively detects potency loss in one component of the mixture comparably to in vivo immunogenicity testing. This report details the assay's setup and validation, offering valuable insights for the clinical development of similar genetic vaccines, particularly those encoding synthetic polypeptides.
ABSTRACT
Neoantigen (neoAg)-based cancer vaccines expand preexisting antitumor immunity and elicit novel cancer-specific T cells. However, at odds with prophylactic vaccines, therapeutic antitumor immunity must be induced when the tumor is present and has already established an immunosuppressive environment capable of rapidly impairing the function of anticancer neoAg T cells, thereby leading to lack of efficacy. To overcome tumor-induced immunosuppression, we first vaccinated mice bearing immune checkpoint inhibitor (CPI)-resistant tumors with an adenovirus vector encoding a set of potent cancer-exogenous CD8 and CD4 T cell epitopes (Ad-CAP1), and then "taught" cancer cells to express the same epitopes by using a tumor-retargeted herpesvirus vector (THV-CAP1). Potent CD8 effector T lymphocytes were elicited by Ad-CAP1, and subsequent THV-CAP1 delivery led to a significant delay in tumor growth and even cure.
ABSTRACT
Chronic inflammation is a major biological mechanism underpinning biological ageing process and age-related diseases. Inflammation is also the key response of host defense against pathogens and tissue injury. Current opinion sustains that during evolution the host defense and ageing process have become linked together. Thus, the large array of defense factors and mechanisms linked to the NF-κB system seem to be involved in ageing process. This concept leads us in proposing inductors of NF-κB signaling pathway as potential ageing biomarkers. On the other hand, ageing biomarkers, represented by biological indicators and selected through apposite criteria, should help to characterize biological age and, since age is a major risk factor in many degenerative diseases, could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. In this report, some inflammatory biomarkers will be discussed for a better understanding of the concept of biological ageing, providing ideas on eventual working hypothesis about potential targets for the development of new therapeutic strategies and improving, as consequence, the quality of life of elderly population.
ABSTRACT
BACKGROUND: Ubiquitous system of regulatory, calcium-dependent, cytoplasmic proteases - calpains - and their endogenous inhibitor - calpastatin - is implicated in the proteolytic regulation of activation, proliferation, and apoptosis of many cell types. However, it has not been thoroughly studied in resting and activated human lymphocytes yet, especially in relation to the subjects' ageing process. The CALPACENT project is an international (Polish-Italian) project aiming at verifying the hypothesis of the role of calpains in the function of peripheral blood immune cells of Polish (Pomeranian) and Italian (Sicilian) centenarians, apparently relatively preserved in comparison to the general elderly population. In this preliminary report we aimed at establishing and comparing the baseline levels of expression of µ- and m-calpain and calpastatin in various, phenotypically defined, populations of human peripheral blood lymphocytes for healthy elderly Sicilians and Poles, as compared to these values observed in young cohort. RESULTS: We have found significant differences in the expression of both µ- and m-calpain as well as calpastatin between various populations of peripheral blood lymphocytes (CD4+, CD8+ and CD19+), both between the age groups compared and within them. Interestingly, significantly higher amounts of µ- and m-calpains but not of calpastatin could be demonstrated in the CD4+CD28- and CD8+CD28- lymphocytes of old subjects (but not in the cells of young individuals), as compared to their CD28+ counterparts. Finally, decreased expression of both calpains in the elderly T cells is not related to the accumulation of effector/memory (CD45RO+) cells in the latter, as the expression of both calpains does not differ significantly between the naïve and memory T cells, while is significantly lower for elderly lymphocytes if both populations are taken separately. CONCLUSIONS: Observed differences in the amounts of CCS member proteins between various populations of lymphocytes of young and elderly subjects may participate in the impaired proliferative activity of these cells in the elderly.
ABSTRACT
Introduction: Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods: To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results: The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion: Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.
Subject(s)
Adenoviridae Infections , Adenovirus Vaccines , COVID-19 , Communicable Diseases , Neoplasms , Mice , Animals , Humans , Adenoviridae/genetics , COVID-19 Vaccines , Adjuvants, Immunologic , Adjuvants, PharmaceuticABSTRACT
BACKGROUND: Tumor microenvironment (TME) represents a critical hurdle in cancer immunotherapy, given its ability to suppress antitumor immunity. Several efforts are made to overcome this hostile TME with the development of new therapeutic strategies modifying TME to boost antitumor immunity. Among these, cytokine-based approaches have been pursued for their known immunomodulatory effects on different cell populations within the TME. IL-12 is a potent pro-inflammatory cytokine that demonstrates striking immune activation and tumor control but causes severe adverse effects when systemically administered. Thus, local administration is considered a potential strategy to achieve high cytokine concentrations at the tumor site while sparing systemic adverse effects. METHODS: Modified Vaccinia Ankara (MVA) vector is a potent inducer of pro-inflammatory response. Here, we cloned IL-12 into the genome of MVA for intratumoral immunotherapy, combining the immunomodulatory properties of both the vector and the cargo. The antitumor activity of MVA-IL-12 and its effect on TME reprogramming were investigated in preclinical tumor models. RNA sequencing (RNA-Seq) analysis was performed to assess changes in the TME in treated and distal tumors and the effect on the intratumoral T-cell receptor repertoire. RESULTS: Intratumoral injection of MVA-IL-12 resulted in strong antitumor activity with the complete remission of established tumors in multiple murine models, including those resistant to checkpoint inhibitors. The therapeutic activity of MVA-IL-12 was associated with very low levels of circulating cytokine. Effective TME reprogramming was demonstrated on treatment, with the reduction of immunosuppressive M2 macrophages while increasing pro-inflammatory M1, and recruitment of dendritic cells. TME switch from immunosuppressive into immunostimulatory environment allowed for CD8 T cells priming and expansion leading to tumor attack. CONCLUSIONS: Intratumoral administration of MVA-IL-12 turns immunologically 'cold' tumors 'hot' and overcomes resistance to programmed cell death protein-1 blockade.
Subject(s)
Interleukin-12 , Neoplasms , Humans , Mice , Animals , Interleukin-12/genetics , Interleukin-12/pharmacology , Tumor Microenvironment , Vaccinia virus/genetics , Cytokines/metabolism , Neoplasms/pathologyABSTRACT
The demographic and social changes of the past decades have determined improvements in public health and longevity. So, the number of centenarians is increasing as a worldwide phenomenon. Scientists have focused their attention on centenarians as optimal model to address the biological mechanisms of "successful and unsuccessful ageing". They are equipped to reach the extreme limits of human life span and, most importantly, to show relatively good health, being able to perform their routine daily life and to escape fatal age-related diseases, such as cardiovascular diseases and cancer. Thus, particular attention has been centered on their genetic background and immune system. In this review, we report our data gathered for over 10 years in Sicilian centenarians. Based on results obtained, we suggest longevity as the result of an optimal performance of immune system and an over-expression of anti-inflammatory sequence variants of immune/inflammatory genes. However, as well known, genetic, epigenetic, stochastic and environmental factors seem to have a crucial role in ageing and longevity. Epigenetics is associated with ageing, as demonstrated in many studies. In particular, ageing is associated with a global loss of methylation state. Thus, the aim of future studies will be to analyze the weight of epigenetic changes in ageing and longevity.
ABSTRACT
Elderly people show a reduced protection against new infections and a decreased response to vaccines as a consequence of impairment of both cellular and humoral immunity. In this paper we have studied memory/naïve B cells in the elderly, evaluating surface immunoglobulin expression, production of the pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-10, and presence of somatic hypermutation, focusing on the IgG(+)IgD(-)CD27(-) double negative (DN) B cells that are expanded in the elderly. Our results show that naïve B cells from young donors need a sufficiently strong stimulus to be activated "in vitro", while naïve B cells from old subjects are able to produce IL-10 and TNF-α when stimulated "physiologically" (α-CD40/IL-4), suggesting that these cells might play a role in the control of the immuno-inflammatory environment in the elderly. In addition, in the elderly there is an accumulation of DN B cells with a reduced rate of somatic hypermutation. Thus, DN B lymphocytes may be exhausted cells that are expanded and accumulate as a by-product of persistent stimulation or impaired germinal center formation.
Subject(s)
B-Lymphocytes/immunology , Cellular Senescence/immunology , Immunologic Memory , Adult , Aged , Aged, 80 and over , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , Humans , Immunoglobulins/immunology , Interleukin-10/biosynthesis , Ionomycin/pharmacology , Lymphocyte Activation , Middle Aged , Tetradecanoylphorbol Acetate/pharmacologyABSTRACT
The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.
ABSTRACT
Like other infectious diseases, COVID-19 shows a clinical outcome enormously variable, ranging from asymptomatic to lethal. In Italy, like in other countries, old male individuals, with one or more comorbidity, are the most susceptible group, and show, consequently, the highest mortality, and morbidity, including lethal respiratory distress syndrome, as the most common complication. In addition, another extraordinary peculiarity, that is a surprising resistance to COVID-19, characterizes some Italian nonagenarians/centenarians. Despite having the typical COVID-19 signs and/or symptoms, such exceptional individuals show a surprising tendency to recover from illness and complications. On the other hand, long-lived people have an optimal performance of immune system related to an overexpression of anti-inflammatory variants in immune/inflammatory genes, as demonstrated by our and other groups. Consequently, we suggest long-lived people as an optimal model for detecting genetic profiles associated with the susceptibility and/or protection to COVID-19, to utilize as potential pharmacological targets for preventing or reducing viral infection in more vulnerable individuals.
Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Aged, 80 and over , Humans , Immune System , Longevity , Male , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiologyABSTRACT
Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a method, called VENUS (Vaccine-Encoded Neoantigens Unrestricted Selection), to prioritize mutated peptides with high potential to be neoantigens. Our method assigns to each mutation a weighted score that combines the mutation allelic frequency, the abundance of the transcript coding for the mutation, and the likelihood to bind the patient's class-I major histocompatibility complex alleles. By ranking mutated peptides encoded by mutations detected in nine cancer patients, VENUS was able to select in the top 60 ranked peptides, the 95% of neoantigens experimentally validated including both CD8 and CD4 T cell specificities. VENUS was evaluated in a murine model in the context of vaccination with an adeno vector encoding the top ranked mutations prioritized in the MC38 cell line. Efficacy studies demonstrated anti tumoral activity of the vaccine when used in combination with checkpoint inhibitors. The results obtained highlight the importance of a combined scoring system taking into account multiple features of each tumor mutation to improve the accuracy of neoantigen prediction.
ABSTRACT
Ageing is an inexorable intrinsic process that affects all cells, tissues, organs and individuals. Due to a diminished homeostasis and increased organism frailty, ageing causes a reduction of the response to environmental stimuli and, in general, is associated to an increased predisposition to illness and death. Actually, it is characterized by a state of reduced ability to maintain health and general homeodynamics of the organism. A large part of the ageing phenotype is explained by an imbalance between inflammatory and anti-inflammatory networks, which results in the low grade chronic pro-inflammatory status of ageing, "inflamm-ageing". It is strictly linked to immunosenescence, and on the whole they are the major contributory factors to the increased frequency of morbidity and mortality among elderly. Inflamm-ageing is compatible with longevity; even if centenarians have an increased level of inflammatory mediators in comparison to old subjects and they are very frail, they also have high level of anti-inflammatory cytokines together with protective genotypes. Actually, data on case control studies performed in Italian centenarians suggest that a pro-inflammatory genotype is unfavourable to reach extreme longevity in good health and likely favours the onset of age-related diseases such as cardiovascular diseases and Alzheimer's disease, the leading causes of mortality and disability in the elderly. However, many associations between gene variants and longevity have been found only in Italian population. This should not be unexpected, since ageing and longevity are complex traits resulting not only and not exclusively from genetics, but rather from the interactions between genetics, environment and chance.
Subject(s)
Inflammation/pathology , Longevity , Aging/genetics , Aging/pathology , Humans , Inflammation/geneticsABSTRACT
Cancer is generally recognized as an age-related disease. In fact, incidence and mortality rates of most human cancers increase consistently with age up to 90 years, but they plateau and decline thereafter. A low-grade systemic inflammation characterizes ageing and this pro-inflammatory status underlies biological mechanisms responsible for age-related inflammatory diseases. On the other hand, clinical and epidemiological studies show a strong association between chronic infection, inflammation and cancer and indicate that even in tumours not directly linked to pathogens, the microenvironment is characterized by the presence of a smouldering inflammation, fuelled primarily by stromal leukocytes. In this review, we have briefly mentioned inflammatory mediators involved in cancer although we decided to choose the ones which show a strict association with ageing and longevity. Inflammation is necessary to manage with damaging agents and is crucial for survival. But, in our opinion, the pro-inflammatory status of ageing might be one of the mechanisms which relate cancer to ageing. The most appropriate inflammatory genes have been selected to survive and to reproduce. Paradoxically, inflammatory age-related diseases (including cancer) are the marks of the same evolutionistic trait. Centenarians are characterized by a higher frequency of genetic markers associated with better control of inflammation. The reduced capacity of centenarians to mount inflammatory responses appears to exert a protective effect towards the development of those age-related pathologies having a strong inflammatory pathogenetic component, including cancer. All in all, centenarians seem to carry a genetic background with a peculiar resistance to cancer which is also an anti-inflammatory profile.
Subject(s)
Aging/immunology , Inflammation/physiopathology , Neoplasms/immunology , Aged , Aged, 80 and over , Aging/genetics , Humans , Incidence , Inflammation/genetics , Inflammation/mortality , Neoplasms/genetics , Neoplasms/mortalityABSTRACT
INTRODUCTION: Innate immunity provides a first line of host defense against infection by recognizing and killing microbes while simultaneously activating an instructive immune response. Toll-like receptors (TLRs) are principal mediators of rapid microbial recognition and function mainly by detection of pathogen-associated molecular patterns that do not exist in the host. Recognition of their ligands leads to a series of signaling events resulting in acute host responses, involved in killing pathogens. DISCUSSION: We describe the involvement of TLR4 polymorphisms in ageing, and in particular in age-related diseases, suggesting the crucial role of molecules of innate immunity in pathophysiology of these diseases. Hence, we observed that pro-inflammatory alleles may be related to unsuccessful ageing, such as Alzheimer's disease, prostate cancer, and atherosclerosis; in contrast, the control of inflammation by anti-inflammatory alleles may result in increased longevity and successful ageing. Finally, a possible therapeutic approach to delay age-related diseases is outlined.
Subject(s)
Aging/genetics , Alzheimer Disease/genetics , Cardiovascular Diseases/genetics , Longevity/genetics , Prostatic Neoplasms/genetics , Toll-Like Receptor 4/genetics , Aging/immunology , Alleles , Alzheimer Disease/immunology , Cardiovascular Diseases/immunology , Female , Genetic Predisposition to Disease , Humans , Immunity, Innate , Longevity/immunology , Male , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/immunology , Toll-Like Receptor 4/immunologyABSTRACT
In this paper, we consider the role of the genetics of inflammation in the pathophysiology of prostate cancer (PCa). This paper is not an extensive review of the literature, rather it is an expert opinion based on data from authors' laboratories on age-related diseases and inflammation. The aim is the detection of a risk profile that potentially allows both the early identification of individuals at risk for disease and the possible discovery of potential targets for medication. In fact, a major goal of clinical research is to improve early detection of age-related diseases, cancer included, by developing tools to move diagnosis backward in disease temporal course, i.e., before the clinical manifestation of the malady, where treatment might play a decisive role in preventing or significantly retarding the manifestation of the disease. The better understanding of the function and the regulation of inflammatory pathway in PCa may help to know the mechanisms of its formation and progression, as well as to identify new targets for the refinement of new treatment such as the pharmacogenomics approach.
Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Aging/genetics , Aging/immunology , Genetic Predisposition to Disease , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/immunology , Male , Pharmacogenetics , Polymorphism, GeneticSubject(s)
Angioedemas, Hereditary/metabolism , Cytokines/metabolism , Interleukin-17/metabolism , Adolescent , Adult , Aged , Angioedemas, Hereditary/pathology , Child , Complement C1 Inhibitor Protein/analysis , Complement C1 Inhibitor Protein/genetics , Female , Humans , Male , Middle Aged , Mutation , Up-Regulation , Young AdultABSTRACT
On April 7,8, 2009 a Symposium entitled "Pathophysiology of Successful and Unsuccessful Ageing" took place in Palermo, Italy. Here, the lectures of G. Pawelec, D. Dunn-Walters and. G. Colonna-Romano on T and B immunosenescence are summarized. In the elderly, many alterations of both innate and acquired immunity have been described. Alterations to the immune system in the older person are generally viewed as a deterioration of immunity, leading to the use of the catch-all term immunosenescence. Indeed, many immunological parameters are often markedly different in elderly compared to young people, and some, mostly circumstantial, evidence suggests that retained function of both innate and acquired immunity in the elderly is correlated with health status. What is often not clear from studies is how far immune dysfunction is a cause or an effect. A better understanding of immunosenescence and mechanisms responsible for proven deleterious changes is needed to maintain a healthy state in later life and to design possible therapeutic interventions.