Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887132

ABSTRACT

The role of the purinergic signal has been extensively investigated in many tissues and related organs, including the central and peripheral nervous systems as well as the gastrointestinal, cardiovascular, respiratory, renal, and immune systems. Less attention has been paid to the influence of purines in the oral cavity, which is the first part of the digestive apparatus and also acts as the body's first antimicrobial barrier. In this review, evidence is provided of the presence and possible physiological role of the purinergic system in the different structures forming the oral cavity including teeth, tongue, hard palate, and soft palate with their annexes such as taste buds, salivary glands, and nervous fibers innervating the oral structures. We also report findings on the involvement of the purinergic signal in pathological conditions affecting the oral apparatus such as Sjögren's syndrome or following irradiation for the treatment of head and neck cancer, and the use of experimental drugs interfering with the purine system to improve bone healing after damage. Further investigations are required to translate the results obtained so far into the clinical setting in order to pave the way for a wider application of purine-based treatments in oral diseases.


Subject(s)
Sjogren's Syndrome , Taste Buds , Humans , Salivary Glands/pathology , Sjogren's Syndrome/pathology , Tongue
2.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012187

ABSTRACT

The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer's disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.


Subject(s)
Alzheimer Disease , Neoplasms , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases , Humans , Lipoproteins, LDL , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Receptors, LDL/metabolism
3.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955821

ABSTRACT

Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The "cholesterol shuttle" is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Niemann-Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol-purine reciprocal control could hopefully promote further research.


Subject(s)
Central Nervous System , Niemann-Pick Diseases , Central Nervous System/metabolism , Cholesterol/metabolism , Humans , Neurons/metabolism , Niemann-Pick Diseases/metabolism , Purines/metabolism , Receptors, Purinergic/metabolism
4.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919012

ABSTRACT

The autonomic nervous system (ANS) plays a crucial role both in acute and chronic psychological stress eliciting changes in many local and systemic physiological and biochemical processes. Salivary secretion is also regulated by ANS. In this study, we explored salivary proteome changes produced in thirty-eight University students by a test stress, which simulated an oral exam. Students underwent a relaxation phase followed by the stress test during which an electrocardiogram was recorded. To evaluate the effect of an olfactory stimulus, half of the students were exposed to a pleasant odor diffused in the room throughout the whole session. Saliva samples were collected after the relaxation phase (T0) and the stress test (T1). State anxiety was also evaluated at T0 and T1. Salivary proteins were separated by two-dimensional electrophoresis, and patterns at different times were compared. Spots differentially expressed were trypsin digested and identified by mass spectrometry. Western blot analysis was used to validate proteomic results. Anxiety scores and heart rate changes indicated that the fake exam induced anxiety. Significant changes of α-amylase, polymeric immunoglobulin receptor (PIGR), and immunoglobulin α chain (IGHA) secretion were observed after the stress test was performed in the two conditions. Moreover, the presence of pleasant odor reduced the acute social stress affecting salivary proteome changes. Therefore, saliva proteomic analysis was a useful approach to evaluate the rapid responses associated to an acute stress test also highlighting known biomarkers.


Subject(s)
Anxiety Disorders/diagnosis , Biomarkers/metabolism , Proteome/metabolism , Saliva/metabolism , Salivary Proteins and Peptides/metabolism , Stress, Psychological/diagnosis , Students/psychology , Adult , Anxiety Disorders/metabolism , Biomarkers/analysis , Female , Humans , Male , Proteome/analysis , Stress, Psychological/metabolism , Universities , Young Adult
5.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008687

ABSTRACT

The cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers responsible for translating extracellular signals to intracellular biological responses in both normal and tumor cells. When these signals are aberrant or missing, cells may undergo neoplastic transformation or become resistant to chemotherapy. cGMP-hydrolyzing phosphodiesterases (PDEs) are attracting tremendous interest as drug targets for many diseases, including cancer, where they regulate cell growth, apoptosis and sensitization to radio- and chemotherapy. In breast cancer, PDE5 inhibition is associated with increased intracellular cGMP levels, which is responsible for the phosphorylation of PKG and other downstream molecules involved in cell proliferation or apoptosis. In this review, we provide an overview of the most relevant studies regarding the controversial role of PDE inhibitors as off-label adjuvants in cancer therapy.


Subject(s)
Breast Neoplasms/prevention & control , Breast Neoplasms/therapy , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Animals , Clinical Trials as Topic , Female , Humans , Nitric Oxide/metabolism , Signal Transduction
6.
Int J Mol Sci ; 22(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199160

ABSTRACT

Acadesine (ACA), a pharmacological activator of AMP-activated protein kinase (AMPK), showed a promising beneficial effect in a mouse model of colitis, indicating this drug as an alternative tool to manage IBDs. However, ACA displays some pharmacodynamic limitations precluding its therapeutical applications. Our study was aimed at evaluating the in vitro and in vivo effects of FA-5 (a novel direct AMPK activator synthesized in our laboratories) in an experimental model of colitis in rats. A set of experiments evaluated the ability of FA5 to activate AMPK and to compare the efficacy of FA5 with ACA in an experimental model of colitis. The effects of FA-5, ACA, or dexamethasone were tested in rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis to assess systemic and tissue inflammatory parameters. In in vitro experiments, FA5 induced phosphorylation, and thus the activation, of AMPK, contextually to the activation of SIRT-1. In vivo, FA5 counteracted the increase in spleen weight, improved the colon length, ameliorated macroscopic damage score, and reduced TNF and MDA tissue levels in DNBS-treated rats. Of note, FA-5 displayed an increased anti-inflammatory efficacy as compared with ACA. The novel AMPK activator FA-5 displays an improved anti-inflammatory efficacy representing a promising pharmacological tool against bowel inflammation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Benzofurans/therapeutic use , Drug Development , Enzyme Activators/pharmacology , Inflammatory Bowel Diseases/drug therapy , Animals , Benzofurans/pharmacology , Body Weight/drug effects , Cell Line , Colon/drug effects , Colon/pathology , Dinitrofluorobenzene/analogs & derivatives , Electrophoresis, Gel, Two-Dimensional , Gene Ontology , Inflammatory Bowel Diseases/pathology , Interleukin-10/metabolism , Male , Malondialdehyde/metabolism , Mice , Organ Size/drug effects , Phosphorylation/drug effects , Rats, Sprague-Dawley , Spleen/drug effects , Tumor Necrosis Factor-alpha/metabolism
7.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500589

ABSTRACT

The aim of this work was to deeply investigate the structure and properties of electrochemically synthesized silver nanoparticles (AgNPs) through high-resolution techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta Potential measurements, and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Strong brightness, tendency to generate nanoclusters containing an odd number of atoms, and absence of the free silver ions in solution were observed. The research also highlighted that the chemical and physical properties of the AgNPs seemed to be related to their peculiar oxidative state as suggested by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD) analyses. Finally, the MTT assay tested the low cytotoxicity of the investigated AgNPs.


Subject(s)
Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Solutions/chemistry , Microscopy, Electron, Transmission/methods , Spectrometry, X-Ray Emission/methods , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
8.
Int J Mol Sci ; 21(10)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443623

ABSTRACT

Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD's effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor. Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.


Subject(s)
Antioxidants/pharmacology , Astrocytes/drug effects , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Cerebral Cortex/metabolism , Neuroprotective Agents/pharmacology , Animals , Apoptosis , Astrocytes/metabolism , Astrocytes/physiology , Cerebral Cortex/physiology , Oxidative Stress , Proteomics , Rats , Serotonin/metabolism
9.
J Enzyme Inhib Med Chem ; 34(1): 189-195, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30734607

ABSTRACT

The genome of Helicobacter pylori encodes for carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α- and ß-CA classes, which together with urease, have a pivotal role in the acid acclimation of the microorganism within the human stomach. Recently, in the exoproteome of H. pylori, a CA with no indication of the corresponding class was identified. Here, using the protonography and the mass spectrometry, a CA belonging to the α-class was detected in the outer membrane vesicles (OMVs) generated by planktonic and biofilm phenotypes of four H. pylori strains. The amount of this metalloenzyme was higher in the planktonic OMVs (pOMVs) than in the biofilm OMVs (bOMVs). Furthermore, the content of α-CA increases over time in the pOMVs. The identification of the α-CA in pOMVs and bOMVs might shed new light on the role of this enzyme in the colonization, survival, persistence, and pathogenesis of H. pylori.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Carbonic Anhydrases/analysis , Carbonic Anhydrases/metabolism , Helicobacter pylori/enzymology , Helicobacter pylori/metabolism
10.
Clin Exp Ophthalmol ; 47(8): 1028-1042, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31206232

ABSTRACT

BACKGROUND: Fuchs endothelial corneal dystrophy (FECD) is a progressive and potentially a sight threatening disease, and a common indication for corneal grafting in the elderly. Aberrant thickening of Descemet's membrane, formation of microscopic excrescences (guttae) and gradual loss of corneal endothelial cells are the hallmarks of the disease. The aim of this study was to identify differentially abundant proteins between FECD-affected and unaffected Descemet's membrane. METHODS: Label-free quantitative proteomics using nanoscale ultra-performance liquid chromatography-mass spectrometry (nUPLC-MSE ) was employed on affected and unaffected Descemet's membrane extracts, and interesting findings were further investigated using quantitative reverse transcription-polymerase chain reaction and immunohistochemical techniques. RESULTS: Quantitative proteomics revealed significantly lower abundance of apolipoprotein E (APOE) and immunoglobulin heavy constant gamma 1 protein (IGHG1) in affected Descemet's membrane. The difference in the distribution of APOE between affected and unaffected Descemet's membrane and of IGHG1 detected by immunohistochemistry support their down-regulation in the disease. Comparative gene expression analysis showed significantly lower APOE mRNA levels in FECD-affected than unaffected corneal endothelium. IGHG1 gene is expressed at extremely low levels in the corneal endothelium, precluding relative expression analysis. CONCLUSIONS: This is the first study to report comparative proteomics of Descemet's membrane tissue, and implicates dysregulation of APOE and IGHG1 proteins in the pathogenesis of Fuchs endothelial corneal dystrophy.


Subject(s)
Apolipoproteins E/genetics , Carrier Proteins/genetics , Fuchs' Endothelial Dystrophy/genetics , Gene Expression Regulation/physiology , Adult , Aged , Aged, 80 and over , Apolipoproteins E/metabolism , Carrier Proteins/metabolism , Chromatography, High Pressure Liquid , Female , Fuchs' Endothelial Dystrophy/metabolism , Humans , Immunohistochemistry , Male , Mass Spectrometry , Middle Aged , Proteomics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
11.
Phytother Res ; 33(9): 2387-2400, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322313

ABSTRACT

Phlomis fruticosa L. and P. herba-venti are species belonging to the Lamiaceae family, which have been traditionally used to prepare tonic and digestive drinks. Multiple studies also demonstrated the inhibitory effects of P. fruticosa extracts and essential oil against oxidative/proinflammatory pathways and bacterial strains deeply involved in ulcerative colitis. Considering these findings, the present study evaluated the effects of alcoholic P. fruticosa and P. herba-venti leaf extracts in isolated rat colon challenged with Escherichia coli lipopolysaccharide (LPS), an ex vivo experimental paradigm of ulcerative colitis. In this context, we assayed colon levels of pro-oxidant and proinflammatory biomarkers, including nitrites, malondialdehyde (MDA), lactate dehydrogenase (LDH), and serotonin (5-HT). Additionally, the extracts have been tested in order to evaluate possible inhibitory effects on specific bacterial and fungal strains involved in ulcerative colitis. Alcoholic P. fruticosa and P. herba-venti extracts were able to blunt LPS-induced nitrite, MDA, 5-HT, and LDH levels in isolated rat colon. The same extracts also inhibited the growth of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, Candida albicans and Candida tropicalis. In conclusion, our findings show a potential role exerted by alcoholic P. fruticosa and P. herba-venti in managing the clinical symptoms related to ulcerative colitis.


Subject(s)
Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Colon/drug effects , Phlomis/chemistry , Plant Extracts/therapeutic use , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Humans , Plant Extracts/pharmacology , Rats
12.
Molecules ; 24(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315236

ABSTRACT

Ethyl acetate (EA), methanol (MeOH), and aqueous extracts of aerial parts of Anthemis tinctoria var. pallida (ATP) and A. cretica subsp. tenuiloba (ACT) were investigated for their phenol and flavonoid content, antioxidant, and key enzyme inhibitory potentials. All extracts displayed antiradical effects, with MeOH and aqueous extracts being a superior source of antioxidants. On the other hand, EA and MeOH extracts were potent against AChE and BChE. Enzyme inhibitory effects against tyrosinase and α-glucosidase were observed, as well. We also studied Anthemis extracts in an ex vivo experimental neurotoxicity paradigm. We assayed extract influence on oxidative stress and neurotransmission biomarkers, including lactate dehydrogenase (LDH) and serotonin (5-HT), in isolated rat cortex challenged with K+ 60 mM Krebs-Ringer buffer (excitotoxicity stimulus). An untargeted proteomic analysis was finally performed in order to explore the putative mechanism in the brain. The pharmacological study highlighted the capability of ACT water extract to blunt K+ 60 mM increase in LDH level and 5-HT turnover, and restore physiological activity of specific proteins involved in neuron morphology and neurotransmission, including NEFMs, VAMP-2, and PKCγ, thus further supporting the neuroprotective role of ACT water extract.


Subject(s)
Anthemis/chemistry , Flavonoids/chemistry , Neuroprotective Agents/chemistry , Phenols/chemistry , Acetylcholinesterase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Flavonoids/pharmacology , GPI-Linked Proteins/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Phenols/pharmacology , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , alpha-Glucosidases/metabolism
13.
J Proteome Res ; 17(12): 4307-4314, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30284448

ABSTRACT

Mitochondria are undeniably the cell powerhouse, directly affecting cell survival and fate. Growing evidence suggest that mitochondrial protein repertoire affects metabolic activity and plays an important role in determining cell proliferation/differentiation or quiescence shift. Consequently, the bioenergetic status of a cell is associated with the quality and abundance of the mitochondrial populations and proteomes. Mitochondrial morphology changes in the development of different cellular functions associated with metabolic switches. It is therefore reasonable to speculate that different cell lines do contain different mitochondrial-associated proteins, and the investigation of these pools may well represent a source for mining missing proteins (MPs). A very effective approach to increase the number of IDs through mass spectrometry consists of reducing the complexity of the biological samples by fractionation. The present study aims at investigating the mitochondrial proteome of five phenotypically different cell lines, possibly expressing some of the MPs, through an enrichment-fractionation approach at the organelle and protein level. We demonstrate a substantial increase in the proteome coverage, which, in turn, increases the likelihood of detecting low abundant proteins, often falling in the category of MPs, and resulting, for the present study, in the identification of METTL12, FAM163A, and RGS13. All MS data have been deposited to the MassIVE data repository ( https://massive.ucsd.edu ) with the data set identifier MSV000082409 and PXD010446.


Subject(s)
Mitochondria/chemistry , Mitochondrial Proteins/analysis , Proteome/analysis , Cell Line , Chemical Fractionation , Databases, Protein , Humans , Mass Spectrometry/methods , Membrane Proteins/analysis , Methyltransferases/analysis , Neoplasm Proteins/analysis , Proteomics/methods , RGS Proteins/analysis
14.
Expert Rev Proteomics ; 15(8): 683-696, 2018 08.
Article in English | MEDLINE | ID: mdl-30058389

ABSTRACT

INTRODUCTION: The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.


Subject(s)
Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Body Fluids/metabolism , Drug Discovery , Humans , Neoplasm, Residual/metabolism
15.
Mol Vis ; 24: 801-817, 2018.
Article in English | MEDLINE | ID: mdl-30713420

ABSTRACT

Purpose: Pseudoexfoliation (PEX) syndrome is an age-related progressive disease of the extracellular matrix with ocular manifestations. PEX is clinically diagnosed by the presence of extracellular exfoliative deposits on the anterior surface of the ocular lens. PEX syndrome is a major risk factor for developing glaucoma, the leading cause of irreversible blindness in the world, and is often associated with the development of cataract. PEX reportedly coexists with Alzheimer disease and increases the risk of heart disease and stroke. PEX material deposited on the anterior surface of the ocular lens is highly proteinaceous, complex, and insoluble, making deciphering the protein composition of the material challenging. Thus, to date, only a small proportion of the protein composition of PEX material is known. The aim of this study was to decipher the protein composition of pathological PEX material deposited on the ocular lens in patients and advance the understanding of pathophysiology of PEX syndrome. Methods: Liquid-chromatography and tandem mass spectrometry (LC-MS/MS) was employed to discover novel proteins in extracts of neat PEX material surgically isolated from patients (n = 4) with PEX syndrome undergoing cataract surgery. A sub-set of the identified proteins was validated with immunohistochemistry using lens capsule specimens from independent patients (n=3); lens capsules from patients with cataract but without PEX syndrome were used as controls (n=4). Expression of transcripts of the validated proteins in the human lens epithelium was analyzed with reverse transcription PCR (RT-PCR). Functional relationships among the proteins identified in this study and genes and proteins previously implicated in the disease were bioinformatically determined using InnateDB. Results: Peptides corresponding to 66 proteins, including ten proteins previously known to be present in PEX material, were identified. Thirteen newly identified proteins were chosen for validation. Of those proteins, 12 were found to be genuine components of the material. The novel protein constituents include apolipoproteins (APOA1 and APOA4), stress response proteins (CRYAA and PRDX2), and blood-related proteins (fibrinogen and hemoglobin subunits), including iron-free hemoglobin. The gene expression data suggest that the identified stress-response proteins and hemoglobin are contributed by the lens epithelium and apolipoproteins and fibrinogen by the aqueous humor to the PEX material. Pathway analysis of the identified novel protein constituents and genes or proteins previously implicated in the disease reiterated the involvement of extracellular matrix organization and degradation, elastic fiber formation, and complement cascade in PEX syndrome. Network analysis suggested a central role of fibronectin in the pathophysiology of the disease. The identified novel protein constituents of PEX material also shed light on the molecular basis of the association of PEX syndrome with heart disease, stroke, and Alzheimer disease. Conclusions: This study expands the understanding of the protein composition of pathological PEX material deposited on the ocular lens in patients with PEX syndrome and provides useful insights into the pathophysiology of this disease. This study together with the previous study by our group (Sharma et al. Experimental Eye Research 2009;89(4):479-85) demonstrate that using neat PEX material, devoid of the underlying lens capsule, for proteomics analysis is an effective approach for deciphering the protein composition of complex and highly insoluble extracellular pathological ocular deposits present in patients with PEX syndrome.


Subject(s)
Cataract/metabolism , Exfoliation Syndrome/metabolism , Lens Capsule, Crystalline/chemistry , Protein Aggregates , Protein Aggregation, Pathological/metabolism , Aged , Aged, 80 and over , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Apolipoproteins A/chemistry , Apolipoproteins A/genetics , Apolipoproteins A/metabolism , Cataract/genetics , Cataract/pathology , Crystallins/chemistry , Crystallins/genetics , Crystallins/metabolism , Elastic Tissue/chemistry , Elastic Tissue/metabolism , Elastic Tissue/pathology , Exfoliation Syndrome/genetics , Exfoliation Syndrome/pathology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibrinogen/chemistry , Fibrinogen/genetics , Fibrinogen/metabolism , Gene Expression , Hemoglobins/chemistry , Hemoglobins/genetics , Hemoglobins/metabolism , Humans , Lens Capsule, Crystalline/metabolism , Lens Capsule, Crystalline/pathology , Male , Peroxiredoxins/chemistry , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Tandem Mass Spectrometry
16.
Int J Mol Sci ; 19(8)2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30096819

ABSTRACT

Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress. Despite recent advances in the research of biomarkers, early diagnosis, and pharmacotherapy, there are no treatments that can halt the progression of these age-associated neurodegenerative diseases. Numerous epidemiological studies indicate that long-term intake of a Mediterranean diet, characterized by a high consumption of extra virgin olive oil, correlates with better cognition in aged populations. Olive oil phenolic compounds have been demonstrated to have different biological activities like antioxidant, antithrombotic, and anti-inflammatory activities. Oleocanthal, a phenolic component of extra virgin olive oil, is getting more and more scientific attention due to its interesting biological activities. The aim of this research was to characterize the neuroprotective effects of oleocanthal against H2O2-induced oxidative stress in neuron-like SH-SY5Y cells. Moreover, protein expression profiling, combined with pathways analyses, was used to investigate the molecular events related to the protective effects. Oleocanthal was demonstrated to counteract oxidative stress, increasing cell viability, reducing reactive oxygen species (ROS) production, and increasing reduced glutathione (GSH) intracellular level. Proteomic analysis revealed that oleocanthal significantly modulates 19 proteins in the presence of H2O2. In particular, oleocanthal up-regulated proteins related to the proteasome, the chaperone heat shock protein 90, the glycolytic enzyme pyruvate kinase, and the antioxidant enzyme peroxiredoxin 1. Moreover, oleocanthal protection seems to be mediated by Akt activation. These data offer new insights into the molecular mechanisms behind oleocanthal protection against oxidative stress.


Subject(s)
Aldehydes/pharmacology , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Oxidative Stress/drug effects , Phenols/pharmacology , Aging/drug effects , Aldehydes/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cyclopentane Monoterpenes , Humans , Hydrogen Peroxide/toxicity , Inflammation/chemically induced , Inflammation/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neuroprotective Agents/pharmacology , Oxidative Stress/genetics , Phenols/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Proteomics , Reactive Oxygen Species/metabolism
17.
J Proteome Res ; 16(12): 4319-4329, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28828861

ABSTRACT

The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.


Subject(s)
Mitochondria/chemistry , Proteome/physiology , Proteomics/standards , Cell Line , Chromatography, Liquid , Humans , Italy , Mitochondrial Proteins/analysis , Protein Interaction Maps/physiology , Tandem Mass Spectrometry
18.
Mass Spectrom Rev ; 34(6): 627-40, 2015.
Article in English | MEDLINE | ID: mdl-24916100

ABSTRACT

Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.


Subject(s)
Forensic Medicine/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Substance Abuse Detection/methods , Animals , Carbon/chemistry , Dermatoglyphics , Equipment Design , Forensic Medicine/instrumentation , Humans , Metals/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemistry , Semiconductors , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Substance Abuse Detection/instrumentation , Surface Properties
19.
Exp Eye Res ; 146: 212-223, 2016 05.
Article in English | MEDLINE | ID: mdl-26997634

ABSTRACT

Pseudoexfoliation (PEX) syndrome is a systemic disease involving the extracellular matrix. It increases the risk of glaucoma, an irreversible cause of blindness, and susceptibility to heart disease, stroke and hearing loss. Single nucleotide polymorphisms (SNPs) in the LOXL1 (Lysyl oxidase-like 1) gene are the major known genetic risk factor for PEX syndrome. Two coding SNPs, rs1048861 (G > T; Arg141Leu) and rs3825942 (G > A; Gly153Asp), in the LOXL1 gene are strongly associated with the disease risk in multiple populations worldwide. In the present study, we investigated functional effects of these SNPs on the LOXL1 protein. We show through molecular modelling that positions 141 and 153 are likely surface residues and hence possible recognition sites for protein-protein interactions; the Arg141Leu and Gly153Asp substitutions cause charge changes that would lead to local differences in protein electrostatic potential and in turn the potential to modify protein-protein interactions. In RFL-6 rat fetal lung fibroblast cells ectopically expressing the LOXL1 protein variants related to PEX (Arg141_Gly153, Arg141_Asp153 or Leu141_Gly153), immunoprecipitation of the secreted variants showed differences in their processing by endogenous proteins, possibly Bone morphogenetic protein-1 (BMP-1) that cleaves and leads to enzymatic activation of LOXL1. Immunofluorescence labelling of the ectopically expressed protein variants in RFL-6 cells showed no significant difference in their extracellular accumulation tendency. In conclusion, this is the first report of a biological effect of the coding SNPs in the LOXL1 gene associated with PEX syndrome, on the LOXL1 protein. The findings indicate that the disease associated coding variants themselves may be involved in the manifestation of PEX syndrome.


Subject(s)
Amino Acid Oxidoreductases/genetics , Exfoliation Syndrome/genetics , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Animals , Bone Morphogenetic Protein 1/metabolism , Cell Line , Exfoliation Syndrome/metabolism , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide , Rats , Risk Factors
20.
Proc Natl Acad Sci U S A ; 110(24): 9794-9, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716697

ABSTRACT

ADP-ribosylation is a posttranslational modification that modulates the functions of many target proteins. We previously showed that the fungal toxin brefeldin A (BFA) induces the ADP-ribosylation of C-terminal-binding protein-1 short-form/BFA-ADP-ribosylation substrate (CtBP1-S/BARS), a bifunctional protein with roles in the nucleus as a transcription factor and in the cytosol as a regulator of membrane fission during intracellular trafficking and mitotic partitioning of the Golgi complex. Here, we report that ADP-ribosylation of CtBP1-S/BARS by BFA occurs via a nonconventional mechanism that comprises two steps: (i) synthesis of a BFA-ADP-ribose conjugate by the ADP-ribosyl cyclase CD38 and (ii) covalent binding of the BFA-ADP-ribose conjugate into the CtBP1-S/BARS NAD(+)-binding pocket. This results in the locking of CtBP1-S/BARS in a dimeric conformation, which prevents its binding to interactors known to be involved in membrane fission and, hence, in the inhibition of the fission machinery involved in mitotic Golgi partitioning. As this inhibition may lead to arrest of the cell cycle in G2, these findings provide a strategy for the design of pharmacological blockers of cell cycle in tumor cells that express high levels of CD38.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Alcohol Oxidoreductases/metabolism , Brefeldin A/metabolism , DNA-Binding Proteins/metabolism , ADP-ribosyl Cyclase/metabolism , ADP-ribosyl Cyclase 1/metabolism , Alcohol Oxidoreductases/chemistry , Animals , Binding Sites , Binding, Competitive , Blotting, Western , Brefeldin A/pharmacology , Cytosol/drug effects , Cytosol/metabolism , DNA-Binding Proteins/chemistry , HeLa Cells , Humans , Membrane Glycoproteins/metabolism , Models, Molecular , NAD/chemistry , NAD/metabolism , Protein Binding , Protein Processing, Post-Translational/drug effects , Protein Structure, Tertiary , Rats
SELECTION OF CITATIONS
SEARCH DETAIL