ABSTRACT
Advances in materials science are increasingly dependent on the development of multifunctional materials capable of improving system efficiency and reducing the environmental impact. In this study, two zero-dimensional (0D) cadmium-based organic-inorganic hybrid materials (BEMPD)2CdBr4 (BEMPD-Br, 1) and (BEMPD)2CdBr2Cl2 (BEMPD-ClBr, 2) (BEMPD = 1-(2-bromoethyl)-1-methylpiperidine) were prepared by halogen doping. Compound 2 is a mixed halide in which there are two halogen sites, Cl and Br, and in a disordered state, which has a regulatory effect on the structural distortion and properties of the compound. The Curie temperatures of compounds 1 and 2 are 348 and 390 K, respectively, and the UV-vis absorption spectra showed that the direct band gaps of compounds 1 and 2 were 4.68 and 4.8 eV, respectively. In addition, room-temperature photoluminescence experiments show broadband emission peaks at 717 and 683 nm for compounds 1 and 2, respectively, with fluorescence lifetimes of 2.414 and 3.915 µs. These 0D hybrids provide an avenue for the development of smart materials and optoelectronic devices, and also provide positive clues for manipulating the properties of organic-inorganic hybrid compounds.
ABSTRACT
In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.
ABSTRACT
AIM: Postoperative gastrointestinal dysfunction (POGD) is a common complication following colorectal surgery. This study aimed to investigate the incidence and risk factors of POGD after minimally invasive surgery and to assess the relationship between robotic surgery, POGD, and their outcomes. METHOD: Patients who had undergone minimally invasive colorectal surgery at our institution between July 2018 and November 2023 were retrospectively enrolled. POGD was diagnosed based on the presence of two or more intestinal symptoms within 72 h or more after surgery. Risk factors were identified through regression analyses, and the impact of POGD on outcomes was assessed using linear regression.The association between those factors was assessed using subgroup analysis and hierarchical regression. RESULTS: A total of 226 patients were included in the analysis, including 33 with POGD. POGD occurred in 14.6% of patients, with a lower incidence in robotic surgery (7.3%) than in laparoscopic surgery (19.8%). Multivariate analysis indicated that robotic surgery had a protective effect, while blood loss exceeding 50 ml was an independent risk factor for POGD. POGD was also correlated with longer length of stays and higher costs. The association between POGD, length of stay, and cost varied depending on the surgical platform. Robotic surgery exacerbated the effect of POGD on short-term outcomes, which aligned with the observed significant interaction effect. CONCLUSION: POGD remains a prevalent postoperative disease. Preventive strategies, including meticulous hemostasis techniques and robotic surgery, should be prioritized by healthcare professionals to reduce POGD risk, improve short-term outcomes, and preserve healthcare resources.
Subject(s)
Colorectal Surgery , Postoperative Complications , Robotic Surgical Procedures , Humans , Robotic Surgical Procedures/adverse effects , Risk Factors , Male , Female , Incidence , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Colorectal Surgery/adverse effects , Treatment Outcome , Aged , Minimally Invasive Surgical Procedures/adverse effects , Time Factors , Length of Stay , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/surgery , Gastrointestinal Diseases/epidemiology , Laparoscopy/adverse effects , Retrospective Studies , AdultABSTRACT
Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.
Subject(s)
Indazoles , Nanoparticles , Neoplasms , Humans , Phototherapy , Pyroptosis , Neoplasms/drug therapy , Immunotherapy , Cell Line, TumorABSTRACT
Welding seam tracking based on online programming is the future trend of intelligent production. However, most of the existing image processing methods have certain limitations in the adaptability, accuracy, and robustness of weld feature point detection. The online welding method of gas metal arc welding (GMAW) based on active vision sensing is studied in this paper. The Steger sub-pixel detection method is used to guarantee the accuracy of feature point extraction, and a self-adaptive search window and self-adaptive slope extraction are proposed on this basis. The self-adaptive window is generated according to the linear information of the weld area, and the scale factor and range threshold constraint are added to realize the real-time detection of the weld feature information. Screening the center pixel of the laser stripe in the self-adaptive window of the current frame by the initial slope or the self-adaptive slope of the previous frame, the linear information of the weld area is obtained. The self-adaptive slope of the current frame is fitted by the random sampling consistency method, and the pixel margin is retained to adapt to the linear detection of different continuous welds. When arc light and other serious interference make it difficult to obtain weld information, a particle filter is used to make the best prediction of the weld position. Finally, the welding robot platform based on laser vision sensing was built to test various continuous welds of the butt weld, fillet weld, and lap weld. Experimental results show that the detection speed is 27 ms, and the accuracy of detection and tracking can respectively reach 0.03 mm and 0.78 mm, which meets the requirements of weld detection and tracking.
ABSTRACT
The outbreak of COVID-19 caused by SARS-CoV-2 has resulted in more than 50 million confirmed cases and over 1 million deaths worldwide as of November 2020. Currently, there are no effective antivirals approved by the Food and Drug Administration to contain this pandemic except the antiviral agent remdesivir. In addition, the trimeric spike protein on the viral surface is highly glycosylated and almost 200,000 variants with mutations at more than 1,000 positions in its 1,273 amino acid sequence were reported, posing a major challenge in the development of antibodies and vaccines. It is therefore urgently needed to have alternative and timely treatments for the disease. In this study, we used a cell-based infection assay to screen more than 3,000 agents used in humans and animals, including 2,855 small molecules and 190 traditional herbal medicines, and identified 15 active small molecules in concentrations ranging from 0.1 nM to 50 µM. Two enzymatic assays, along with molecular modeling, were then developed to confirm those targeting the virus 3CL protease and the RNA-dependent RNA polymerase. Several water extracts of herbal medicines were active in the cell-based assay and could be further developed as plant-derived anti-SARS-CoV-2 agents. Some of the active compounds identified in the screen were further tested in vivo, and it was found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens, and Mentha haplocalyx were effective in a challenge study using hamsters as disease model.
Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adult , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Drug Repositioning/methods , Female , Humans , Male , Pandemics , Plant Extracts/pharmacology , SARS-CoV-2/genetics , Vero CellsABSTRACT
Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.
Subject(s)
Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spodoptera , Animals , Pyrethrins/pharmacology , Pyrethrins/toxicity , Spodoptera/drug effects , Spodoptera/genetics , Nitriles/toxicity , Nitriles/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Insecticides/pharmacology , Insecticides/toxicity , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , RNA Interference , Inactivation, Metabolic , Larva/drug effects , Larva/geneticsABSTRACT
Immunotherapy is a promising cancer treatment method for eradicating tumor cells by enhancing the immune response. However, there are several major obstacles to conventional phototherapy-mediated immune responses, including inadequate immunogenicity and immunosuppressive environment. Here, we present a novel photoimmunotherapy modality-the development of membrane-anchoring small molecule inducing plasma membrane rupture (PMR) by NIR-II photo-stimulation, thus evoking cell necrotic death and enhancing antitumor immunotherapy. Our top-performing membrane-anchoring small molecule (CBT-3) exhibits temperature-tunable PMR efficiency, allowing rapid necrotic death in cancer cells at 50 µM dose by using exogenous NIR-II light-mediated mild photothermal effect (1064 nm, 0.6 W cm-2). Further evidence indicated that this gentle therapeutic approach activated inflammatory signaling pathways in cells, enhanced immunogenic cell death, and reshaped the immunosuppressive tumor microenvironment, ultimately promoting systemic antitumor immune responses in vivo. This study represents the first instance of utilizing NIR-II photo-amplified PMR effect based on membrane-anchoring small molecule, providing a novel avenue for advancing cancer photoimmunotherapy.
ABSTRACT
Pentagonal cyclization at the bay positions of armchair-edged graphenic cores can build molecular bowls without the destruction of hexagonal lattices. However, this synthesis remains challenging due to unfavorable strain and the multiple reactions required. Here, we show that a new type of graphenic molecular bowl with a depth of 1.7 Å and a diameter of 1.2 nm is constructed by sextuple Se annulation at the bay positions of armchair-edged hexa-peri-hexabenzocoronene. This graphenic bowl is functionalized with phenylseleno groups that stack into a discrete bilayer dimer in solution. Such a dimer exhibits high stability and survives in the gas phase after laser ablation. Strikingly, the asymmetric one-dimensional supramolecular columns of graphenic bowl with coherent stacking configuration are observed in the solid state, which results in a strong second harmonic generation with prominent polarization dependence. Our findings present a concise synthesis of a giant molecular bowl with a graphenic core and demonstrate the unique supramolecular assembly of extended graphenic bowls.
ABSTRACT
MOTIVATION: The identification of binding hotspots in protein-RNA interactions is crucial for understanding their potential recognition mechanisms and drug design. The experimental methods have many limitations, since they are usually time-consuming and labor-intensive. Thus, developing an effective and efficient theoretical method is urgently needed. RESULTS: Here, we present SREPRHot, a method to predict hotspots, defined as the residues whose mutation to alanine generate a binding free energy change ≥2.0 kcal/mol, while others use a cutoff of 1.0 kcal/mol to obtain balanced datasets. To deal with the dataset imbalance, Synthetic Minority Over-sampling Technique (SMOTE) is utilized to generate minority samples to achieve a dataset balance. Additionally, besides conventional features, we use two types of new features, residue interface propensity previously developed by us, and topological features obtained using node-weighted networks, and propose an effective Random Grouping feature selection strategy combined with a two-step method to determine an optimal feature set. Finally, a stacking ensemble classifier is adopted to build our model. The results show SREPRHot achieves a good performance with SEN, MCC and AUC of 0.900, 0.557 and 0.829 on the independent testing dataset. The comparison study indicates SREPRHot shows a promising performance. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/ChunhuaLiLab/SREPRHot. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Subject(s)
RNA , SoftwareABSTRACT
Although radiotherapy (RT) is the preferred treatment for elderly patients with brain tumors, certain negative effects can't be ignored. Fortunately, platelet-rich plasma (PRP) presents with a promising potential for the treatment of neurological diseases. Therefore, this study aimed to explore the effect of PRP on neuroinflammation, emotional disorder and cognitive dysfunction induced by RT in aged rats. Firstly, whole brain RT (WBRT) model was established by whole brain irradiation with 10 Gy of 6-MeV electron beam in rats. Next, twenty 20-month-old female SD rats were divided into four groups (sham group, PRP group, WBRT group, and WBRT + PRP group) according different treatments. After that, the cognitive dysfunction and depression-like behavior of rats were examined by novel object recognition test (NORT), Morris water maze test (MWM), open field test (OFT) and elevated plus maze test (EPM). Besides, immunohistochemistry was used to detect the expression of microglial marker protein Iba-1 in rat hippocampus; enzyme linked immunosorbent assay (ELISA) to examine the levels of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (IL-1ß), IL-18, and monocyte chemoattractant protein 1 (MCP-1) in rat hippocampus; real-time quantitative reverse transcription PCR (qRT-PCR) and western blot to measure the levels of neurotrophic factors brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B receptor (TrkB), and nerve growth factor (NGF) in rat hippocampus; and western blot also to observe the protein expression levels of NOD-like receptor protein 3 (NLRP3), caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), and IL-1ß in rat hippocampus. After experiments, some results obtained were shown as follows. PRP could significantly improve learning and memory ability and depression-like behavior, increase the level of neurotrophic factors, inhibit the activation of microglia and decrease the level of pro-inflammatory factors in WBRT rats. In addition, PRP significantly inhibited the activation of NLRP3 inflammasomes. To sum up, PRP can ameliorate neuroinflammation, emotional disorder and cognitive dysfunction induced by RT in aged rats, and the mechanism may be related to its inhibitory effect on NLRP3 inflammasome activation.
Subject(s)
Cognitive Dysfunction , Platelet-Rich Plasma , Rats , Female , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Cognitive Dysfunction/therapy , Nerve Growth Factors , Platelet-Rich Plasma/metabolismABSTRACT
We devised a new method for asymmetric cyclopropanation by employing (S)-(thiolan-2-yl)diphenylmethanol benzyl ether as an organocatalyst. Under optimal conditions, an in situ generated sulfur ylide reacts with (E)-chalcones via a Johnson-Corey-Chaykovsky reaction to afford a variety of cyclopropanes in excellent yields and stereoselectivities. This strategy employs low-environmental-risk reaction conditions and reusable catalysts. Hence, it is a green and efficient method for constructing cyclopropane scaffolds.
Subject(s)
Chalcones , Ether , Stereoisomerism , Ethyl Ethers , Ethers , Cyclopropanes , CatalysisABSTRACT
Velvet antler is a traditional Chinese medicine with various pharmacological values, which is an important raw material for traditional Chinese medicinal wine. Nevertheless, the chemical compositions and bioactivities of velvet antler residue used for making medicinal wine are rarely reported, leading to a waste of resources. In this study, a velvet antler protein (VA-pro) was extracted from velvet antler residue by simulating the gastrointestinal digestion, and its composition, structural characteristics and in vivo anti-tumor activities were determined and investigated. VA-pro possessed high purity with a relatively low molecular weight as 22.589 kDa under HPLC, one- and two-dimensional electrophoresis, and it contained high contents of Pro, Gly, Glu and Ala. Besides, the secondary structure of VA-pro was dominated by ß-turn and ß-sheet, and VA-pro possessed similar protein sequence, isoelectric point and amino acid compositions to hypothetical protein G4228_020061. The in vivo results substantiated that VA-pro could improve the body weights and immune organ indices, increase the expressions of sera cytokines and regulate the distributions of T and B lymphocytes subsets in peripheral blood of S180 tumor-bearing mice. Furthermore, VA-pro could effectively inhibit solid S180 tumors growth by inducing S phase cell cycle arrest mediated through mitochondria. To summarize, our study provided theoretical support that VA-pro had the potential to be used as an immunopotentiator in immunocompromised or cancer-bearing hosts.
Subject(s)
Antlers , Neoplasms , Mice , Animals , Antlers/chemistry , Antlers/metabolism , Molecular Weight , Proteins/metabolism , Amino Acids/metabolism , Neoplasms/metabolismABSTRACT
BACKGROUND: Hypertension caused by air pollution exposure is a growing concern in China. The association between air pollutant exposure and hypertension has been found to be potentiated by obesity, however, little is known about the processes mediating this association. This study investigated the association between fine particulate matter (aerodynamic equivalent diameter ≤ 2.5 microns, PM2.5) exposure and the prevalence of hypertension in a representative population in southern China and tested whether obesity mediated this association. METHODS: A total of 14,308 adults from 48 communities/villages in southern China were selected from January 2015 to December 2015 using a stratified multistage random sampling method. Hourly PM2.5 measurements were collected from the China National Environmental Monitoring Centre. Restricted cubic splines were used to analyze the nonlinear dose-response relationship between PM2.5 exposure and hypertension risk. The mediating effect mechanism of obesity on PM2.5-associated hypertension was tested in a causal inference framework following the approach proposed by Imai and Keele. RESULTS: A total of 20.7% (2966/14,308) of participants in the present study were diagnosed with hypertension. Nonlinear exposure-response analysis revealed that exposure to an annual mean PM2.5 concentration above 41.8 µg/m3 was associated with increased hypertension risk at an incremental gradient. 9.1% of the hypertension burden could be attributed to exposure to elevated annual average concentrations of PM2.5. It is noteworthy that an increased body fat percentage positively mediated 59.3% of the association between PM2.5 exposure and hypertension risk, whereas body mass index mediated 34.3% of this association. CONCLUSIONS: This study suggests that a significant portion of the estimated effect of exposure to PM2.5 on the risk of hypertension appears to be attributed to its effect on alterations in body composition and the development of obesity. These findings could inform intersectoral actions in future studies to protect populations with excessive fine particle exposure from developing hypertension.
Subject(s)
Air Pollutants , Air Pollution , Hypertension , Adult , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Hypertension/etiology , Air Pollution/adverse effects , Air Pollution/analysis , Obesity/epidemiology , Obesity/complications , China/epidemiology , Adipose Tissue , Environmental Exposure/adverse effects , Environmental Exposure/analysisABSTRACT
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.
Subject(s)
Insecticides , Animals , Spodoptera/physiology , Insecticides/pharmacology , Nicotiana/metabolism , Benzoxazines , Larva/metabolism , Gene Expression , Insecticide Resistance/geneticsABSTRACT
The effect of pachymic acid (PA) on pulmonary fibrosis in rats was expected to be investigated in this study. Firstly, bleomycin (BLM) was used to establish pulmonary fibrosis rat model, then PA (10, 20, or 40 mg/kg) was intragastrically administered to the rats for 14 days. Subsequently, a variety of tests was performed to observe changes in sample tissues after different treatments. Briefly, the degree of pulmonary edema in rats was assessed through dry/wet weight ratio. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to observe the pathological injury and fibrosis of lung tissue. Biochemical kits were applied to measure the levels of hydroxyproline (Hyp), transforming growth factor beta-1 (TGFß-1), malondialdehyde (MDA), reactive oxygen species (ROS), and adenosine triphosphate (ATP) and the activities of superoxide dismutase (SOD) and catalase (CAT) in rat lung tissues of each group. The mitochondrial DNA (mtDNA) copy number in rat lung tissue was tested using qRT-PCR. Additionally, the western blot was employed to detect the expression levels of pulmonary fibrosis-related proteins and endoplasmic reticulum (ER) stress-related proteins in each group of rat lung tissue. By virtue of experimental verification above, PA was discovered to alleviate BLM-induced pulmonary edema, pulmonary fibrosis and histopathological damage. On the one hand, PA treatment decreased Hyp and TGF-ß1 levels and down-regulated pulmonary fibrosis-related protein expression [collagen I, α-smooth muscle actin (α-SMA), and fibronectin] in the lung tissue of BLM rats. On the other hand, it significantly increased the levels of SOD, CAT and ATP while decreased the activities of MDA and ROS in BLM rat lung tissues. In addition, the expression levels of ER stress-related proteins [glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Caspase 9, and activating transcription factor 4 (ATF4)] were significantly down-regulated in the lung tissue of BLM rats after PA treatment. Collectively, PA may ameliorate BLM-induced pulmonary fibrosis and histopathological damage in rats through inhibiting ER stress and improving mitochondrial function.
ABSTRACT
Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (â¢OH, â¢SO4-, and â¢O2-) and non-radicals (1O2) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Subject(s)
Solanaceae , Prospective Studies , Peroxides , VegetablesABSTRACT
(-)-Antrocin (1), produced by the medicinal mushroom Antrodia cinnamomea, is a potent antiproliferative compound. The biosynthetic gene cluster of 1 was identified, and the pathway was characterized by heterologous expression. We characterized a haloacid dehalogenase-like terpene cyclase AncC that biosynthesizes the drimane-type sesquiterpene (+)-albicanol (2) from farnesyl pyrophosphate (FPP). Biochemical characterization of AncC, including kinetic studies and mutagenesis, demonstrated the functions of two domains: a terpene cyclase (TC) and a pyrophosphatase (PPase). The TC domain first cyclizes FPP to albicanyl pyrophosphate, and the PPase domain then removes the pyrophosphate to form 2. Intriguingly, AncA (94 % sequence identity to AncC), in the same gene cluster, converts FPP into (R)-trans-γ-monocyclofarnesol instead of 2. Notably, Y283/F375 in the TC domain of AncA serve as a gatekeeper in controlling the formation of a cyclofarnesoid rather than a drimane-type scaffold.
Subject(s)
Agaricales , Sesquiterpenes , Terpenes/metabolism , Diphosphates , Agaricales/metabolism , Antibodies, Antineutrophil Cytoplasmic , Kinetics , Sesquiterpenes/chemistry , Pyrophosphatases/metabolism , Multigene FamilyABSTRACT
The generation of sulfur-stabilized borenium cations by SnCl4, a halophilic Lewis acid, leads to the formation of oxathiaborolium pentachlorostannate, which is an excellent Lewis acid and is successfully used to catalyze the [2 + 2] cycloadditions of N-substituted maleimides and silyl enol ethers to afford cycloadducts with excellent enantioselectivities (17 examples, up to 96% ee). This efficient synthetic methodology provides a new viable and significantly efficient route to ring-fused cyclobutanes bearing quaternary stereogenic centers by combining pot, atom, and step economy to synthesize complex organic molecules.
Subject(s)
Ethers , Lewis Acids , Cycloaddition Reaction , Stereoisomerism , CatalysisABSTRACT
A panchromatic triad and a charge-separation unit are joined in a crossbar architecture to capture solar energy. The panchromatic-absorber triad (T) is comprised of a central free-base porphyrin that is strongly coupled via direct ethyne linkages to two perylene-monoimide (PMI) groups. The charge-separation unit incorporates a free-base or zinc chlorin (C or ZnC) as a hole acceptor (or electron donor) and a perylene-diimide (PDI) as an electron acceptor, both attached to the porphyrin via diphenylethyne linkers. The free-base porphyrin is common to both light-harvesting and charge-separation motifs. The chlorin and PDI also function as ancillary light absorbers, complementing direct excitation of the panchromatic triad to produce the discrete lowest excited state of the array (T*). Attainment of full charge separation across the pentad entails two steps: (1) an initial excited-state hole/electron-transfer process to oxidize the chlorin (and reduce the panchromatic triad) or reduce the PDI (and oxidize the panchromatic triad); and (2) subsequent ground-state electron/hole migration to produce oxidized chlorin and reduced PDI. Full charge separation for pentad ZnC-T-PDI to generate ZnC+-T-PDI- occurs with a quantum yield of â¼30% and mean lifetime â¼1 µs in dimethyl sulfoxide. For C-T-PDI, initial charge separation is followed by rapid charge recombination. The molecular designs and studies reported here reveal the challenges of balancing the demands for charge separation (linker length and composition, excited-state energies, redox potentials, and medium polarity) with the constraints for panchromatic absorption (strong electronic coupling of the porphyrin and two PMI units) for integrated function in solar-energy conversion.