ABSTRACT
On April 22, CDC and the U.S. Department of Agriculture (USDA) reported cases of two domestic cats with confirmed infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). These are the first reported companion animals (including pets and service animals) with SARS-CoV-2 infection in the United States, and among the first findings of SARS-CoV-2 symptomatic companion animals reported worldwide. These feline cases originated from separate households and were epidemiologically linked to suspected or confirmed human COVID-19 cases in their respective households. Notification of presumptive positive animal test results triggered a One Health* investigation by state and federal partners, who determined that no further transmission events to other animals or persons had occurred. Both cats fully recovered. Although there is currently no evidence that animals play a substantial role in spreading COVID-19, CDC advises persons with suspected or confirmed COVID-19 to restrict contact with animals during their illness and to monitor any animals with confirmed SARS-CoV-2 infection and separate them from other persons and animals at home (1).
Subject(s)
Betacoronavirus/isolation & purification , Cat Diseases/diagnosis , Cat Diseases/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Pandemics/veterinary , Pets/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/veterinary , Animals , COVID-19 , Cats , Coronavirus Infections/transmission , Female , Humans , Male , New York , Pneumonia, Viral/transmission , SARS-CoV-2 , ZoonosesABSTRACT
In the United States, outbreaks of avian influenza H5 and H7 virus infections in poultry have raised concern about the risk for infections in humans. We reviewed the data collected during 2014-2017 and found no human infections among 4,555 exposed responders who were wearing protection.
Subject(s)
Influenza A virus , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Disease Outbreaks , History, 21st Century , Influenza A virus/classification , Influenza in Birds/history , Poultry , Poultry Diseases/history , Public Health Surveillance , United States/epidemiologyABSTRACT
OBJECTIVE: To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US. ANIMALS: 204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021. PROCEDURES: Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners. RESULTS: Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs. CLINICAL RELEVANCE: Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.
Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Humans , Dogs , United States/epidemiology , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Zoonoses/epidemiology , PetsABSTRACT
Human-to-animal and animal-to-animal transmission of SARS-CoV-2 has been documented; however, investigations into SARS-CoV-2 transmission in congregate animal settings are lacking. We investigated four animal shelters in the United States that had identified animals with exposure to shelter employees with laboratory-confirmed COVID-19. Of the 96 cats and dogs with specimens collected, only one dog had detectable SARS-CoV-2 neutralizing antibodies; no animal specimens had detectable viral RNA. These data indicate a low probability of human-to-animal transmission events in cats and dogs in shelter settings with early implementation of infection prevention interventions.
ABSTRACT
Hantavirus pulmonary syndrome (HPS) is caused by an infection with viruses of the genus Hantavirus in the western hemisphere. Rodent hosts of hantaviruses are present throughout the United States. In July 2004, two HPS case-patients were identified in Randolph County, WV: a wildlife science graduate student working locally and a Randolph County resident. We interviewed family members and colleagues, reviewed medical records, and conducted environmental studies at likely exposure sites. Small mammals were trapped, and blood, urine, and tissue samples were submitted to the Centers for Disease Control and Prevention for laboratory analyses. These analyses confirmed that both patients were infected with Monongahela virus, a Sin Nombre hantavirus variant hosted by the Cloudland deer mouse, Peromyscus maniculatus nubiterrae. Other than one retrospectively diagnosed case in 1981, these are the first HPS cases reported in West Virginia. These cases emphasize the need to educate the public throughout the United States regarding risks and prevention measures for hantavirus infection.
Subject(s)
Hantavirus Pulmonary Syndrome/etiology , Sin Nombre virus/isolation & purification , Adult , Animals , Disease Reservoirs , Ecology , Humans , Male , Peromyscus/virology , Phylogeny , Sin Nombre virus/classificationABSTRACT
Persistence of multiple variants of rabies virus in wild Chiroptera and Carnivora presents a continuing challenge to medical, veterinary and wildlife management professionals. Oral rabies vaccination (ORV) targeting specific Carnivora species has emerged as an integral adjunct to conventional rabies control strategies to protect humans and domestic animals. ORV has been applied with progress toward eliminating rabies in red foxes (Vulpes vulpes) in western Europe and southern Ontario, Canada. More recently since 1995, coordinated ORV was implemented among eastern states in the U.S.A. to prevent spread of raccoon (Procyon lotor) rabies and to contain and eliminate variants of rabies virus in the gray fox (Urocyon cinereoargenteus) and coyote (Canis latrans) in Texas. In this paper, we describe the current cooperative ORV program in the U.S.A. and discuss the importance of coordination of surveillance and rabies control programs in Canada, Mexico and the U.S.A. Specifically, several priorities have been identified for these programs to succeed, which include additional oral vaccines, improved baits to reach target species, optimized ORV strategies, effective communication and legal strategies to limit translocation across ORV barriers, and access to sufficient long-term funding. These key priorities must be addressed to ensure that ORV has the optimal chance of achieving long range programmatic goals of eliminating specific variants of rabies virus in North American terrestrial carnivores.
Subject(s)
Animals, Wild , Rabies Vaccines/administration & dosage , Rabies/veterinary , Administration, Oral , Animals , Rabies/prevention & control , Rabies/transmission , United States , Vaccination , Zoonoses/virologyABSTRACT
Visceral leishmaniasis, caused by protozoa of the genus Leishmania donovani complex, is a vectorborne zoonotic infection that infects humans, dogs, and other mammals. In 2000, this infection was implicated as causing high rates of illness and death among foxhounds in a kennel in New York. A serosurvey of >12,000 foxhounds and other canids and 185 persons in 35 states and 4 Canadian provinces was performed to determine geographic extent, prevalence, host range, and modes of transmission within foxhounds, other dogs, and wild canids and to assess possible infections in humans. Foxhounds infected with Leishmania spp. were found in 18 states and 2 Canadian provinces. No evidence of infection was found in humans. The infection in North America appears to be widespread in foxhounds and limited to dog-to-dog mechanisms of transmission; however, if the organism becomes adapted for vector transmission by indigenous phlebotomines, the probability of human exposure will be greatly increased.
Subject(s)
Dog Diseases/epidemiology , Leishmaniasis, Visceral/veterinary , Animals , Animals, Wild/parasitology , Canada/epidemiology , Coyotes/parasitology , Dog Diseases/parasitology , Dog Diseases/transmission , Dogs , Foxes/parasitology , Humans , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/transmission , Seroepidemiologic Studies , United States/epidemiology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmissionABSTRACT
The largest measles outbreak in the United States during 1999 was traced to a 34-year-old minister with an undocumented history of vaccination, infected while traveling outside the United States. Local health departments in the Central Virginia Health District performed an epidemiological and laboratory investigation that identified 14 additional confirmed cases of measles, including 2 in health care providers and 5 in congregation members. Eight cases (53%) occurred among adults aged 30-35 years and 7 (47%) among children aged 13 months to 8 years. Although no religious exemptions were cited, only 2 case patients had documented proof of vaccination. This outbreak demonstrates the potential for limited indigenous spread of measles that occurs when imported cases expose susceptible groups. Almost half of the imported measles cases in the United States occur in US residents returning from foreign travel. Vaccination is highly recommended for all overseas travelers who are without documented proof of adequate immunization or measles immunity.