Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Immunol ; 43(2): 440-451, 2023 02.
Article in English | MEDLINE | ID: mdl-36329240

ABSTRACT

BACKGROUND: X-linked inhibitor of apoptosis protein (XIAP) deficiency is a severe immunodeficiency with clinical features including hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) due to defective NOD2 responses. Management includes immunomodulatory therapies and hematopoietic stem cell transplant (HSCT). However, this cohort is particularly susceptible to the chemotherapeutic regimens and acutely affected by graft-vs-host disease (GvHD), driving poor long-term survival in transplanted patients. Autologous HSC gene therapy could offer an alternative treatment option and would abrogate the risks of alloreactivity. METHODS: Hematopoietic progenitor (Lin-ve) cells from XIAPy/- mice were transduced with a lentiviral vector encoding human XIAP cDNA before transplantation into irradiated XIAP y/- recipients. After 12 weeks animals were challenged with the dectin-1 ligand curdlan and recovery of innate immune function was evaluated though analysis of inflammatory cytokines, body weight, and splenomegaly. XIAP patient-derived CD14+ monocytes were transduced with the same vector and functional recovery was demonstrated using in vitro L18-MDP/NOD2 assays. RESULTS: In treated XIAPy/- mice, ~40% engraftment of gene-corrected Lin-ve cells led to significant recovery of weight loss, splenomegaly, and inflammatory cytokine responses to curdlan, comparable to wild-type mice. Serum IL-6, IL-10, MCP-1, and TNF were significantly reduced 2-h post-curdlan administration in non-corrected XIAPy/- mice compared to wild-type and gene-corrected animals. Appropriate reduction of inflammatory responses was observed in gene-corrected mice, whereas non-corrected mice developed an inflammatory profile 9 days post-curdlan challenge. In gene-corrected patient CD14+ monocytes, TNF responses were restored following NOD2 activation with L18-MDP. CONCLUSION: Gene correction of HSCs recovers XIAP-dependent immune defects and could offer a treatment option for patients with XIAP deficiency.


Subject(s)
Genetic Diseases, X-Linked , Lymphoproliferative Disorders , Humans , Mice , Animals , X-Linked Inhibitor of Apoptosis Protein/genetics , Splenomegaly , Lymphoproliferative Disorders/genetics , Genetic Diseases, X-Linked/genetics , Cytokines
2.
J Allergy Clin Immunol ; 150(4): 955-964.e16, 2022 10.
Article in English | MEDLINE | ID: mdl-35182547

ABSTRACT

BACKGROUND: Inflammatory phenomena such as hyperinflammation or hemophagocytic lymphohistiocytosis are a frequent yet paradoxical accompaniment to virus susceptibility in patients with impairment of type I interferon (IFN-I) signaling caused by deficiency of signal transducer and activator of transcription 2 (STAT2) or IFN regulatory factor 9 (IRF9). OBJECTIVE: We hypothesized that altered and/or prolonged IFN-I signaling contributes to inflammatory complications in these patients. METHODS: We explored the signaling kinetics and residual transcriptional responses of IFN-stimulated primary cells from individuals with complete loss of one of STAT1, STAT2, or IRF9 as well as gene-edited induced pluripotent stem cell-derived macrophages. RESULTS: Deficiency of any IFN-stimulated gene factor 3 component suppressed but did not abrogate IFN-I receptor signaling, which was abnormally prolonged, in keeping with insufficient induction of negative regulators such as ubiquitin-specific peptidase 18 (USP18). In cells lacking either STAT2 or IRF9, this late transcriptional response to IFN-α2b mimicked the effect of IFN-γ. CONCLUSION: Our data suggest a model wherein the failure of negative feedback of IFN-I signaling in STAT2 and IRF9 deficiency leads to immune dysregulation. Aberrant IFN-α receptor signaling in STAT2- and IRF9-deficient cells switches the transcriptional output to a prolonged, IFN-γ-like response and likely contributes to clinically overt inflammation in these individuals.


Subject(s)
Interferon Type I , Factor IX , Humans , Interferon Type I/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-alpha , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Ubiquitin Thiolesterase , Ubiquitin-Specific Proteases
3.
Br J Haematol ; 192(2): 366-374, 2021 01.
Article in English | MEDLINE | ID: mdl-33131064

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is a life-threatening primary immunodeficiency associated with bleeding of variable severity due to thrombocytopenia. Correction of the thrombocytopenia is of paramount importance for most WAS patients. We report a retrospective analysis of the safety and efficacy of romiplostim treatment in reducing thrombocytopenia and bleeding tendency in 67 children (median age 1·3 years) with genetically confirmed WAS, followed in eight months (range, 1-12 months). Complete or partial primary responses regarding platelet counts were observed in 22 (33%) and 18 (27%) subjects, respectively. Yet, even in the non-responder group, the risk of haemorrhagic events decreased significantly, to 21%, after the first month of treatment. The responses tended to be durable and stable over time, with no significant fluctuations in platelets counts. The results of this retrospective study of a large cohort of WAS patients demonstrates that romiplostim can be used to increase platelet counts and reduce the risks of life-threatening bleeding in WAS patients awaiting haematopoietic stem cell transplantation or forgoing the procedure for various reasons.


Subject(s)
Receptors, Fc/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Thrombocytopenia/complications , Thrombocytopenia/drug therapy , Thrombopoietin/therapeutic use , Wiskott-Aldrich Syndrome/complications , Adolescent , Child , Child, Preschool , Hemorrhage/complications , Hemorrhage/drug therapy , Humans , Infant , Platelet Count , Recombinant Fusion Proteins/adverse effects , Retrospective Studies , Thrombopoietin/adverse effects , Treatment Outcome
4.
J Allergy Clin Immunol ; 141(3): 1036-1049.e5, 2018 03.
Article in English | MEDLINE | ID: mdl-29241729

ABSTRACT

BACKGROUND: Immunodysregulation polyendocrinopathy enteropathy x-linked (IPEX) syndrome is a monogenic autoimmune disease caused by FOXP3 mutations. Because it is a rare disease, the natural history and response to treatments, including allogeneic hematopoietic stem cell transplantation (HSCT) and immunosuppression (IS), have not been thoroughly examined. OBJECTIVE: This analysis sought to evaluate disease onset, progression, and long-term outcome of the 2 main treatments in long-term IPEX survivors. METHODS: Clinical histories of 96 patients with a genetically proven IPEX syndrome were collected from 38 institutions worldwide and retrospectively analyzed. To investigate possible factors suitable to predict the outcome, an organ involvement (OI) scoring system was developed. RESULTS: We confirm neonatal onset with enteropathy, type 1 diabetes, and eczema. In addition, we found less common manifestations in delayed onset patients or during disease evolution. There is no correlation between the site of mutation and the disease course or outcome, and the same genotype can present with variable phenotypes. HSCT patients (n = 58) had a median follow-up of 2.7 years (range, 1 week-15 years). Patients receiving chronic IS (n = 34) had a median follow-up of 4 years (range, 2 months-25 years). The overall survival after HSCT was 73.2% (95% CI, 59.4-83.0) and after IS was 65.1% (95% CI, 62.8-95.8). The pretreatment OI score was the only significant predictor of overall survival after transplant (P = .035) but not under IS. CONCLUSIONS: Patients receiving chronic IS were hampered by disease recurrence or complications, impacting long-term disease-free survival. When performed in patients with a low OI score, HSCT resulted in disease resolution with better quality of life, independent of age, donor source, or conditioning regimen.


Subject(s)
Diabetes Mellitus, Type 1/congenital , Diarrhea , Forkhead Transcription Factors , Genetic Diseases, X-Linked , Hematopoietic Stem Cell Transplantation , Immune System Diseases/congenital , Immunosuppression Therapy , Mutation , Adolescent , Adult , Allografts , Child , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/mortality , Diabetes Mellitus, Type 1/therapy , Diarrhea/genetics , Diarrhea/immunology , Diarrhea/mortality , Diarrhea/therapy , Disease-Free Survival , Female , Follow-Up Studies , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/mortality , Genetic Diseases, X-Linked/therapy , Humans , Immune System Diseases/genetics , Immune System Diseases/immunology , Immune System Diseases/mortality , Immune System Diseases/therapy , Infant , Male , Retrospective Studies , Survival Rate
5.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-36976641

ABSTRACT

STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.


Subject(s)
COVID-19 , Encephalitis, Herpes Simplex , Influenza, Human , Pneumonia , Virus Diseases , Humans , Child, Preschool , Virus Diseases/genetics , Alleles , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics
6.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36515678

ABSTRACT

Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.


Subject(s)
CD28 Antigens , Microfilament Proteins , Humans , CD28 Antigens/metabolism , Microfilament Proteins/genetics , Mutation/genetics , Phenotype , CD4-Positive T-Lymphocytes
7.
J Allergy Clin Immunol Pract ; 10(7): 1797-1804.e7, 2022 07.
Article in English | MEDLINE | ID: mdl-35470098

ABSTRACT

BACKGROUND: Bacillus Calmette-Guierin (BCG) vaccination complications are common in inborn errors of immunity (IEI) due to the inability to clear live attenuated Mycobacterium bovis. Various BCG-vaccine strains are used worldwide, and the profile of the Russian BCG strain vaccine complications in IEI is poorly characterized. OBJECTIVE: To evaluate risks of BCG infection in a large cohort of patients with IEI vaccinated with the Russian BCG strain. METHODS: We evaluated 778 patients with IEI vaccinated with the Russian BCG strain. RESULTS: A total of 114 (15%) developed BCG infection, 41 (36%) with local, 19 (17%) with regional, and 54 with (47%) disseminated disease. BCG infection was seen in 58% of the patients with severe combined immunodeficiency (SCID), 82% with chronic granulomatous disease, 50% with innate immune defects, 5% with combined immunodeficiency, and 2% with other IEI. BCG infection presented at a median age of 4 to 5 months in SCID, chronic granulomatous disease, combined immunodeficiency, and other IEI groups versus 12 months in patients with innate immune defects (P < .005). We found no influence of specific genetic defects, CD3+ and natural killer cell numbers in SCID, or dihydrorhodamine test stimulation index values in chronic granulomatous disease on the BCG-infection risks. All patients with SCID received antimycobacterial therapy at SCID diagnosis even in the absence of active BCG infection. More antimycobacterial agents were required in disseminated relative to local or regional infection (P < .0001). Only 1 of 114 patients (with SCID) died of BCG-related complications (<1%). CONCLUSIONS: BCG infection is common in patients with IEI receiving BCG vaccination. Rational early antimycobacterial therapy, combined with anticytokine agents for posttransplant inflammatory syndrome prevention, and treatment in SCID may prevent BCG-related mortality.


Subject(s)
Bacillus , Bacterial Infections , Granulomatous Disease, Chronic , Mycobacterium bovis , Primary Immunodeficiency Diseases , Severe Combined Immunodeficiency , Anti-Bacterial Agents , BCG Vaccine/therapeutic use , Bacterial Infections/complications , Granulomatous Disease, Chronic/complications , Humans , Infant , Severe Combined Immunodeficiency/therapy
8.
Front Pediatr ; 8: 577, 2020.
Article in English | MEDLINE | ID: mdl-33042920

ABSTRACT

Objectives: Mutations in the neuroblastoma-amplified sequence (NBAS) gene were originally described in patients with skeletal dysplasia or isolated liver disease of variable severity. Subsequent publications reported a more complex phenotype. Among multisystemic clinical symptoms, we were particularly interested in the immunological consequences of the NBAS deficiency. Methods: Clinical and laboratory data of 3 patients ages 13, 6, and 5 in whom bi-allelic NBAS mutations had been detected via next-generation sequencing were characterized. Literature review of 23 publications describing 74 patients was performed. Results: We report three Russian patients with compound heterozygous mutations of the NBAS gene who had combined immunodeficiency characterized by hypogammaglobulinemia, low T-cells, and near-absent B-cells, along with liver disease, skeletal dysplasia, optic-nerve atrophy, and dysmorphic features. Analysis of the data of 74 previously reported patients who carried various NBAS mutations demonstrated that although the most severe form of liver disease seems to require disruption of the N-terminal or middle part of NBAS, mutations of variable localizations in the gene have been associated with some form of liver disease, as well as immunological disorders. Conclusions: NBAS deficiency has a broad phenotype, and referral to an immunologist should be made in order to screen for immunodeficiency.

SELECTION OF CITATIONS
SEARCH DETAIL