Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Publication year range
1.
Euro Surveill ; 29(5)2024 Feb.
Article in English | MEDLINE | ID: mdl-38304950

ABSTRACT

Airport malaria is uncommon but increasing in Europe and often difficult to diagnose. We describe the clinical, epidemiological and environmental investigations of a cluster of airport malaria cases and measures taken in response. Three Frankfurt International Airport employees without travel histories to malaria-endemic areas were diagnosed with Plasmodium falciparum malaria in Germany in 2022. Two cases were diagnosed within 1 week, and the third one after 10 weeks. Two cases had severe disease, all three recovered fully. The cases worked in separate areas and no specific location for the transmissions could be identified. No additional cases were detected among airport employees. In June and July, direct flights from Equatorial Guinea, Nigeria and Angola and one parcel originating in Ghana arrived at Frankfurt airport. No vector-competent mosquitoes could be trapped to identify the source of the outbreak. Whole genome sequencing of P. falciparum genomes showed a high genetic relatedness between samples of the three cases and suggested the geographical origin closest to Ghana. A diagnosis of airport malaria should prompt appropriate and comprehensive outbreak investigations to identify the source and to prevent severe forms of falciparum malaria.


Subject(s)
Malaria, Falciparum , Malaria , Animals , Humans , Airports , Travel , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria/epidemiology , Germany/epidemiology , Plasmodium falciparum/genetics
2.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37754682

ABSTRACT

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Subject(s)
Malaria, Falciparum , Malaria , Child , Infant , Infant, Newborn , Humans , Child, Preschool , Female , Pregnancy , Plasmodium falciparum , Cohort Studies , Burkina Faso/epidemiology , Maternal Exposure , Placenta , Antibodies, Protozoan , Malaria/epidemiology , Immunoglobulin G , Antigens, Protozoan
3.
BMC Genomics ; 24(1): 606, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821878

ABSTRACT

BACKGROUND: Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS: This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS: Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.


Subject(s)
Malaria, Vivax , Malaria , Humans , Plasmodium vivax/genetics , Malaria/parasitology , South America , Whole Genome Sequencing , Mutation , Malaria, Vivax/parasitology , Protozoan Proteins/genetics
4.
Euro Surveill ; 27(16)2022 04.
Article in English | MEDLINE | ID: mdl-35451360

ABSTRACT

We report an outbreak investigation of two fatal cases of autochthonous Plasmodium falciparum malaria that occurred in Belgium in September 2020. Various hypotheses of the potential source of infection were investigated. The most likely route of transmission was through an infectious exotic Anopheles mosquito that was imported via the international airport of Brussels or the military airport Melsbroek and infected the cases who lived at 5 km from the airports. Based on genomic analysis of the parasites collected from the two cases, the most likely origin of the Plasmodium was Gabon or Cameroon. Further, the parasites collected from the two Belgian patients were identical by descent, which supports the assumption that the two infections originated from the bite of the same mosquito, during interrupted feeding. Although airport malaria remains a rare event, it has significant implications, particularly for the patient, as delayed or missed diagnosis of the cause of illness often results in complications and mortality. Therefore, to prevent such severe or fatal outcomes, we suggest a number of public health actions including increased awareness among health practitioners, especially those working in the vicinity of airports, and increased surveillance of exotic mosquito species at airports.


Subject(s)
Culicidae , Malaria, Falciparum , Malaria , Plasmodium , Airports , Animals , Belgium/epidemiology , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Seasons
5.
Antimicrob Agents Chemother ; 65(8): e0009521, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34031050

ABSTRACT

Chloroquine (CQ) is the first-line treatment for Plasmodium vivax malaria in most countries where malaria is endemic. Monitoring P. vivax CQ resistance (CQR) is critical but remains challenged by the difficulty to distinguish real treatment failure from reinfection or liver relapse. The therapeutic efficacy of CQ against uncomplicated P. vivax malaria was evaluated in Gia Lai Province, Vietnam. Sixty-seven patients were enrolled and followed for 42 days using microscopy and quantitative PCR. Adequate clinical and parasitological response (ACPR) was 100% (66/66) on day 28 but 75.4% (49/65) on day 42. Eighteen recurrences (27.7%) were detected, with a median time to recurrence of 42 days (interquartile range [IQR], 35 to 42) and blood CQ concentration of <100 ng/ml. Primary infections leading to recurrence occurred in younger individuals (median age for ACPR = 25 years [IQR, 20 to 28]; recurrences = 18 [16 to 21]; P = 0.002) had a longer parasite clearance time (PCT for ACPR = 47.5 h [IQR, 36.2 to 59.8 h]; recurrences = 54.2 [48.4 to 62.0]; P = 0.035) and higher pvcrt gene expression (median relative expression ratio for ACPR = 0.09 [IQR, 0.05 to 0.22]; recurrences = 0.20 [0.15 to 0.56]; P = 0.002), but showed no differences in ex vivo CQ sensitivity. Parasite genotyping by microsatellites, single nucleotide polymorphism (SNP) barcoding, and whole-genome sequencing (WGS) identified a majority of homologous recurrences, with 80% (8/10) showing >98% identity by descent to paired day 0 samples. This study shows that CQ remained largely efficacious to treat P. vivax in Gia Lai; i.e., recurrences occurred late (>day 28) and in the presence of low blood CQ concentrations. However, the combination of both WGS and gene expression analysis (pvcrt) data with clinical data (PCT) allowed us to identify potential emergence of low-grade CQR, which should be closely monitored. (This study has been registered at ClinicalTrials.gov under identifier NCT02610686.).


Subject(s)
Antimalarials , Malaria, Vivax , Adult , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Drug Resistance/genetics , Humans , Malaria, Vivax/drug therapy , Plasmodium vivax/genetics , Recurrence , Young Adult
6.
PLoS Pathog ; 15(6): e1007809, 2019 06.
Article in English | MEDLINE | ID: mdl-31185066

ABSTRACT

Malaria is caused by Plasmodium parasites, which invade and replicate in erythrocytes. For Plasmodium falciparum, the major cause of severe malaria in humans, a heterotrimeric complex comprised of the secreted parasite proteins, PfCyRPA, PfRIPR and PfRH5 is essential for erythrocyte invasion, mediated by the interaction between PfRH5 and erythrocyte receptor basigin (BSG). However, whilst CyRPA and RIPR are present in most Plasmodium species, RH5 is found only in the small Laverania subgenus. Existence of a complex analogous to PfRH5-PfCyRPA-PfRIPR targeting BSG, and involvement of CyRPA and RIPR in invasion, however, has not been addressed in non-Laverania parasites. Here, we establish that unlike P. falciparum, P. knowlesi and P. vivax do not universally require BSG as a host cell invasion receptor. Although we show that both PkCyRPA and PkRIPR are essential for successful invasion of erythrocytes by P. knowlesi parasites in vitro, neither protein forms a complex with each other or with an RH5-like molecule. Instead, PkRIPR is part of a different trimeric protein complex whereas PkCyRPA appears to function without other parasite binding partners. It therefore appears that in the absence of RH5, outside of the Laverania subgenus, RIPR and CyRPA have different, independent functions crucial for parasite survival.


Subject(s)
Basigin/metabolism , Malaria/metabolism , Multiprotein Complexes/metabolism , Plasmodium knowlesi/metabolism , Protozoan Proteins/metabolism , Basigin/genetics , Humans , Malaria/genetics , Multiprotein Complexes/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium knowlesi/genetics , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Protozoan Proteins/genetics , Species Specificity
7.
Malar J ; 20(1): 225, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011373

ABSTRACT

BACKGROUND: Loop-mediated isothermal amplification (LAMP) for malaria diagnosis at the point of care (POC) depends on the detection capacity of synthesized nucleic acids and the specificity of the amplification target. To improve malaria diagnosis, new colorimetric LAMP tests were developed using multicopy targets for Plasmodium vivax and Plasmodium falciparum detection. METHODS: The cytochrome oxidase I (COX1) mitochondrial gene and the non-coding sequence Pvr47 for P. vivax, and the sub-telomeric sequence of erythrocyte membrane protein 1 (EMP1) and the non-coding sequence Pfr364 for P. falciparum were targeted to design new LAMP primers. The limit of detection (LOD) of each colorimetric LAMP was established and assessed with DNA extracted by mini spin column kit and the Boil & Spin method from 28 microscopy infections, 101 malaria submicroscopic infections detected by real-time PCR only, and 183 negatives infections by both microscopy and PCR. RESULTS: The LODs for the colorimetric LAMPs were estimated between 2.4 to 3.7 parasites/µL of whole blood. For P. vivax detection, the colorimetric LAMP using the COX1 target showed a better performance than the Pvr47 target, whereas the Pfr364 target was the most specific for P. falciparum detection. All microscopic infections of P. vivax were detected by PvCOX1-LAMP using the mini spin column kit DNA extraction method and 81% (17/21) were detected using Boil & Spin sample preparation. Moreover, all microscopic infections of P. falciparum were detected by Pfr364-LAMP using both sample preparation methods. In total, PvCOX1-LAMP and Pfr364-LAMP detected 80.2% (81 samples) of the submicroscopic infections using the DNA extraction method by mini spin column kit, while 36.6% (37 samples) were detected using the Boil & Spin sample preparation method. CONCLUSION: The colorimetric LAMPs with multicopy targets using the COX1 target for P. vivax and the Pfr364 for P. falciparum have a high potential to improve POC malaria diagnosis detecting a greater number of submicroscopic Plasmodium infections.


Subject(s)
Colorimetry/methods , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Electron Transport Complex IV/analysis , Plasmodium falciparum/enzymology , Plasmodium vivax/enzymology , Protozoan Proteins/analysis
8.
Malar J ; 20(1): 94, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33593344

ABSTRACT

BACKGROUND: Genetic polymorphisms in the human immune system modulate susceptibility to malaria. However, there is a paucity of data on the contribution of immunogenetic variants to malaria susceptibility in infants, who present differential biological features related to the immaturity of their adaptive immune system, the protective effect of maternal antibodies and fetal haemoglobin. This study investigated the association between genetic variation in innate immune response genes and malaria susceptibility during the first year of life in 656 infants from a birth cohort survey performed in Nanoro, Burkina Faso. METHODS: Seventeen single nucleotide polymorphisms (SNPs) in 11 genes of the immune system previously associated with different malaria phenotypes were genotyped using TaqMan allelic hybridization assays in a Fluidigm platform. Plasmodium falciparum infection and clinical disease were documented by active and passive case detection. Case-control association analyses for both alleles and genotypes were carried out using univariate and multivariate logistic regression. For cytokines showing significant SNP associations in multivariate analyses, cord blood supernatant concentrations were measured by quantitative suspension array technology (Luminex). RESULTS: Genetic variants in IL-1ß (rs1143634) and FcγRIIA/CD32 (rs1801274)-both in allelic, dominant and co-dominant models-were significantly associated with protection from both P. falciparum infection and clinical malaria. Furthermore, heterozygote individuals with rs1801274 SNP in FcγRIIA/CD32 showed higher IL-1RA levels compared to wild-type homozygotes (P = 0.024), a cytokine whose production is promoted by the binding of IgG immune complexes to Fcγ receptors on effector immune cells. CONCLUSIONS: These findings indicate that genetic polymorphisms in genes driving innate immune responses are associated to malaria susceptibility during the first year of life, possibly by modulating production of inflammatory mediators.


Subject(s)
Genetic Predisposition to Disease/genetics , Immunity, Innate/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Burkina Faso , Case-Control Studies , Female , Humans , Infant , Male
9.
J Antimicrob Chemother ; 75(8): 2272-2281, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32437557

ABSTRACT

BACKGROUND: Artemisinin-based combination therapies (ACTs) have significantly contributed to reduce Plasmodium falciparum malaria burden in Vietnam, but their efficacy is challenged by treatment failure of dihydroartemisinin/piperaquine ACT in Southern provinces. OBJECTIVES: To assess the efficacy of dihydroartemisinin/piperaquine for uncomplicated P. falciparum malaria in Gia Lai, Central Vietnam, and determine parasite resistance to artemisinin (ClinicalTrials.gov identifier NCT02604966). METHODS: Sixty patients received either dihydroartemisinin/piperaquine (4 mg/kg/day, 3 days; n = 33) or artesunate monotherapy (4 mg/kg/day, 3 days; n = 27) followed by dihydroartemisinin/piperaquine (AS + DHA/PPQ). Clinical phenotypes were determined during a 42 day follow-up and analysed together with ex vivo susceptibility to antimalarials and molecular markers of drug resistance. RESULTS: Day 3 positivity rate was significantly higher in the AS + DHA/PPQ arm compared with dihydroartemisinin/piperaquine (70.4% versus 39.4%, P = 0.016). Parasite clearance time was 95.2 h (AS + DHA/PPQ) versus 71.9 h (dihydroartemisinin/piperaquine, P = 0.063) and parasite clearance half-life was 7.4 h (AS + DHA/PPQ) versus 7.0 h (dihydroartemisinin/piperaquine, P = 0.140). Adequate clinical and parasitological response at Day 42 was 100% in both arms. By RT-qPCR, 36% (19/53) patients remained positive until Day 7. No recurrences were detected. kelch13 artemisinin resistance mutations were found in 87% (39/45) of isolates and 50% (20/40) were KEL1/C580Y. The piperaquine resistance marker plasmepsin-2 was duplicated in 10.4% (5/48). Isolates from Day 3-positive patients (n = 18) had higher ex vivo survival rates to artemisinin compounds (P < 0.048) and prevalence of kelch13 mutations (P = 0.005) than Day 3-negative patients (n = 5). The WHO definition of artemisinin resistance was fulfilled in 60% (24/40) of cases. CONCLUSIONS: Although dihydroartemisinin/piperaquine remained effective to treat P. falciparum, the high Day 3 positivity rate and prevalence of KEL1 strains calls for continuous monitoring of dihydroartemisinin/piperaquine efficacy in Central Vietnam.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Quinolines , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Artesunate , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Quinolines/therapeutic use , Vietnam/epidemiology
10.
PLoS Med ; 16(5): e1002784, 2019 05.
Article in English | MEDLINE | ID: mdl-31100064

ABSTRACT

BACKGROUND: In Vietnam, the importance of vivax malaria relative to falciparum during the past decade has steadily increased to 50%. This, together with the spread of multidrug-resistant Plasmodium falciparum, is a major challenge for malaria elimination. A 2-year prospective cohort study to assess P. vivax morbidity after radical cure treatment and related risk factors was conducted in Central Vietnam. METHODS AND FINDINGS: The study was implemented between April 2009 and December 2011 in four neighboring villages in a remote forested area of Quang Nam province. P. vivax-infected patients were treated radically with chloroquine (CQ; 25 mg/kg over 3 days) and primaquine (PQ; 0.5 mg/kg/day for 10 days) and visited monthly (malaria symptoms and blood sampling) for up to 2 years. Time to first vivax recurrence was estimated by Kaplan-Meier survival analysis, and risk factors for first and recurrent infections were identified by Cox regression models. Among the 260 P. vivax patients (61% males [159/260]; age range 3-60) recruited, 240 completed the 10-day treatment, 223 entered the second month of follow-up, and 219 were followed for at least 12 months. Most individuals (76.78%, 171/223) had recurrent vivax infections identified by molecular methods (polymerase chain reaction [PCR]); in about half of them (55.61%, 124/223), infection was detected by microscopy, and 84 individuals (37.67%) had symptomatic recurrences. Median time to first recurrence by PCR was 118 days (IQR 59-208). The estimated probability of remaining free of recurrence by month 24 was 20.40% (95% CI [14.42; 27.13]) by PCR, 42.52% (95% CI [35.41; 49.44]) by microscopy, and 60.69% (95% CI [53.51; 67.11]) for symptomatic recurrences. The main risk factor for recurrence (first or recurrent) was prior P. falciparum infection. The main limitations of this study are the age of the results and the absence of a comparator arm, which does not allow estimating the proportion of vivax relapses among recurrent infections. CONCLUSION: A substantial number of P. vivax recurrences, mainly submicroscopic (SM) and asymptomatic, were observed after high-dose PQ treatment (5.0 mg/kg). Prior P. falciparum infection was an important risk factor for all types of vivax recurrences. Malaria elimination efforts need to address this largely undetected P. vivax transmission by simultaneously tackling the reservoir of P. falciparum and P. vivax infections.


Subject(s)
Antimalarials/administration & dosage , Chloroquine/administration & dosage , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Primaquine/administration & dosage , Adolescent , Adult , Antimalarials/adverse effects , Child , Child, Preschool , Chloroquine/adverse effects , Drug Administration Schedule , Female , Humans , Incidence , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Male , Middle Aged , Plasmodium vivax/pathogenicity , Primaquine/adverse effects , Progression-Free Survival , Prospective Studies , Recurrence , Risk Assessment , Risk Factors , Time Factors , Vietnam/epidemiology , Young Adult
11.
Article in English | MEDLINE | ID: mdl-30782998

ABSTRACT

During the intraerythrocytic asexual cycle malaria parasites acquire nutrients and other solutes through a broad selectivity channel localized at the membrane of the infected erythrocyte termed the plasmodial surface anion channel (PSAC). The protein product of the Plasmodium falciparum clonally variant clag3.1 and clag3.2 genes determines PSAC activity. Switches in the expression of clag3 genes, which are regulated by epigenetic mechanisms, are associated with changes in PSAC-dependent permeability that can result in resistance to compounds toxic for the parasite, such as blasticidin S. Here, we investigated whether other antimalarial drugs require CLAG3 to reach their intracellular target and consequently are prone to parasite resistance by epigenetic mechanisms. We found that the bis-thiazolium salts T3 (also known as albitiazolium) and T16 require the product of clag3 genes to enter infected erythrocytes. P. falciparum populations can develop resistance to these compounds via the selection of parasites with dramatically reduced expression of both genes. However, other compounds previously demonstrated or predicted to enter infected erythrocytes through transport pathways absent from noninfected erythrocytes, such as fosmidomycin, doxycycline, azithromycin, lumefantrine, or pentamidine, do not require expression of clag3 genes for their antimalarial activity. This suggests that they use alternative CLAG3-independent routes to access parasites. Our results demonstrate that P. falciparum can develop resistance to diverse antimalarial compounds by epigenetic changes in the expression of clag3 genes. This is of concern for drug development efforts because drug resistance by epigenetic mechanisms can arise quickly, even during the course of a single infection.


Subject(s)
Antimalarials/therapeutic use , Erythrocytes/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Epigenesis, Genetic , Malaria, Falciparum/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
12.
BMC Med ; 17(1): 220, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31813381

ABSTRACT

INTRODUCTION: As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS: Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS: Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION: Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination.


Subject(s)
Malaria, Falciparum/therapy , Malaria, Vivax/therapy , Plasmodium falciparum/pathogenicity , Plasmodium vivax/pathogenicity , Animals , Child, Preschool , Female , Humans , Incidence , Infant , Longitudinal Studies , Male , Papua New Guinea/epidemiology , Prevalence , Risk Factors
13.
Malar J ; 18(1): 302, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31477117

ABSTRACT

BACKGROUND: Infection during pregnancy with Plasmodium falciparum is associated with maternal anaemia and adverse birth outcomes including low birth weight (LBW). Studies using polymerase chain reaction (PCR) techniques indicate that at least half of all infections in maternal venous blood are missed by light microscopy or rapid diagnostic tests. The impact of these subpatent infections on maternal and birth outcomes remains unclear. METHODS: In a cohort of women co-enrolled in a clinical trial of intermittent treatment with sulfadoxine-pyrimethamine (SP) plus azithromycin for the prevention of LBW (< 2500 g) in Papua New Guinea (PNG), P. falciparum infection status at antenatal enrolment and delivery was assessed by routine light microscopy and real-time quantitative PCR. The impact of infection status at enrolment and delivery on adverse birth outcomes and maternal haemoglobin at delivery was assessed using logistic and linear regression models adjusting for potential confounders. Together with insecticide-treated bed nets, women had received up to 3 monthly intermittent preventive treatments with SP plus azithromycin or a single clearance treatment with SP plus chloroquine. RESULTS: A total of 9.8% (214/2190) of women had P. falciparum (mono-infection or mixed infection with Plasmodium vivax) detected in venous blood at antenatal enrolment at 14-26 weeks' gestation. 4.7% of women had microscopic, and 5.1% submicroscopic P. falciparum infection. At delivery (n = 1936), 1.5% and 2.0% of women had submicroscopic and microscopic P. falciparum detected in peripheral blood, respectively. Submicroscopic P. falciparum infections at enrolment or at delivery in peripheral or placental blood were not associated with maternal anaemia or adverse birth outcomes such as LBW. Microscopic P. falciparum infection at antenatal enrolment was associated with anaemia at delivery (adjusted odds ratio [aOR] 2.00, 95% confidence interval [CI] 1.09, 3.67; P = 0.025). Peripheral microscopic P. falciparum infection at delivery was associated with LBW (aOR 2.75, 95% CI 1.27; 5.94, P = 0.010) and preterm birth (aOR 6.58, 95% CI 2.46, 17.62; P < 0.001). CONCLUSIONS: A substantial proportion of P. falciparum infections in pregnant women in PNG were submicroscopic. Microscopic, but not submicroscopic, infections were associated with adverse outcomes in women receiving malaria preventive treatment and insecticide-treated bed nets. Current malaria prevention policies that combine insecticide-treated bed nets, intermittent preventive treatment and prompt treatment of symptomatic infections appear to be appropriate for the management of malaria in pregnancy in settings like PNG.


Subject(s)
Anemia/parasitology , Infant, Low Birth Weight , Malaria, Falciparum/blood , Malaria, Falciparum/complications , Pregnancy Complications, Infectious/parasitology , Adult , Anti-Bacterial Agents/administration & dosage , Antimalarials/administration & dosage , Artemisinins/administration & dosage , Asymptomatic Infections , Azithromycin/administration & dosage , Female , Hemoglobin A/analysis , Humans , Infant, Newborn , Malaria, Falciparum/prevention & control , Papua New Guinea , Plasmodium falciparum/genetics , Pregnancy , Pregnancy Outcome , Premature Birth , Prospective Studies , Pyrimethamine/administration & dosage , Sulfadoxine/administration & dosage , Young Adult
14.
J Infect Dis ; 217(12): 1967-1976, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29659897

ABSTRACT

Background: Although consensus exists that malaria in pregnancy (MiP) increases the risk of malaria in infancy, and eventually nonmalarial fevers (NMFs), there is a lack of conclusive evidence of benefits of MiP preventive strategies in infants. Methods: In Burkina Faso, a birth cohort study was nested to a clinical trial assessing the effectiveness of a community-based scheduled screening and treatment of malaria in combination with intermittent preventive treatment with sulfadoxine-pyrimethamine (CSST/IPTp-SP) to prevent placental malaria. Clinical episodes and asymptomatic infections were monitored over 1 year of follow-up to compare the effect of CSST/IPTp-SP and standard IPTp-SP on malaria and NMFs. Results: Infants born during low-transmission season from mothers receiving CSST/IPTp-SP had a 26% decreased risk of experiencing a first clinical episode (hazard ratio, 0.74 [95% confidence interval, .55-0.99]; P = .047). CSST/IPTp-SP interacted with birth season and gravidity to reduce the incidence of NMFs. No significant effects of CSST/IPTp-SP on the incidence of clinical episodes, parasite density, and Plasmodium falciparum infections were observed. Conclusions: Our findings indicate that CSST/IPTp-SP strategy may provide additional protection against both malaria and NMFs in infants during the first year of life, and suggest that malaria control interventions during pregnancy could have long-term benefits in infants.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Adult , Burkina Faso , Cohort Studies , Drug Combinations , Female , Humans , Incidence , Infant , Male , Mass Screening/methods , Plasmodium falciparum/drug effects , Pregnancy , Pregnancy Complications, Parasitic/diagnosis , Pregnancy Complications, Parasitic/drug therapy , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use
15.
Emerg Infect Dis ; 24(3): 541-548, 2018 03.
Article in English | MEDLINE | ID: mdl-29460743

ABSTRACT

An influx of immigrants is contributing to the reemergence of Plasmodium vivax malaria in Greece; 1 persistent focus of transmission is in Laconia, Pelopónnese. We genotyped archived blood samples from a substantial proportion of malaria cases recorded in Greece in 2009-2013 using 8 microsatellite markers and a PvMSP-3α gene fragment and plotted their spatiotemporal distribution. High parasite genetic diversity with low multiplicity of infection was observed. A subset of genetically identical/related parasites was restricted to 3 areas in migrants and Greek residents, with some persisting over 2 consecutive transmission periods. We identified 2 hitherto unsuspected additional foci of local transmission: Kardhítsa and Attica. Furthermore, this analysis indicates that several cases in migrants initially classified as imported malaria were actually locally acquired. This study shows the potential for P. vivax to reestablish transmission and counsels public health authorities about the need for vigilance to achieve or maintain sustainable malaria elimination.


Subject(s)
Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Alleles , Genetic Variation , Genome, Protozoan , Genotype , Geography , Greece/epidemiology , History, 21st Century , Humans , Malaria, Vivax/history , Malaria, Vivax/transmission , Spatio-Temporal Analysis
16.
BMC Med ; 16(1): 198, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30384846

ABSTRACT

BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life.


Subject(s)
Immunity, Innate/immunology , Malaria, Falciparum/diagnosis , Toll-Like Receptors/immunology , Adult , Cohort Studies , Female , Humans , Malaria, Falciparum/immunology , Male , Pregnancy , Prospective Studies
17.
Malar J ; 17(1): 109, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29530044

ABSTRACT

BACKGROUND: Malaria in pregnancy leads to serious adverse effects on the mother and the child and accounts for 75,000-200,000 infant deaths every year. Currently, the World Health Organization recommends intermittent preventive treatment of malaria in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) at each scheduled antenatal care (ANC) visit. This study aimed to assess IPTp-SP coverage in mothers delivering in health facilities and at the community. In addition, factors associated with low IPTp-SP uptake and malaria adverse outcomes in pregnancy were investigated. METHODS: A community and a health facility-based surveys were conducted in mothers delivering in Chókwè district, southern Mozambique. Social-demographic data, malaria prevention practices and obstetric history were recorded through self-report and antenatal records. For women delivering at health facilities, a clinical examination of mother and child was performed, and malaria infection at delivery was determined by rapid diagnostic test, microscopy, quantitative PCR and placental histology. RESULTS: Of 1141 participants, 46.6, 30.2, 13.5 and 9.6% reported taking ≥ 3, two, one and none SP doses, respectively. Low IPTp uptake (< 3 doses) was associated with non-institutional deliveries (AOR = 2.9, P < 0.001), first ANC visit after week 28 (AOR = 5.4, P < 0.001), low awareness of IPTp-SP (AOR = 1.6, P < 0.002) and having no or only primary education (AOR = 1.3, P = 0.041). The overall prevalence of maternal malaria (peripheral and/or placental) was 16.8% and was higher among women from rural areas compared to those from urban areas (AOR = 1.9, P < 0.001). Younger age (< 20 years; AOR = 1.6, P = 0.042) and living in rural areas (AOR = 1.9, P < 0.001) were predictors of maternal malaria at delivery. Being primigravidae (AOR = 2.2, P = 0.023) and preterm delivery (AOR = 2.6, P < 0.001) predicted low birth weight while younger age was also associated with premature delivery (AOR = 1.4, P = 0.031). CONCLUSION: The coverage for two and ≥ 3 doses of IPTp-SP is moderately higher than estimates from routine health facility records in Gaza province in 2015. However, this is still far below the national target of 80% for ≥ 3 doses. Ongoing campaigns aiming to increase the use of malaria prevention strategies during pregnancy should particularly target rural populations, increasing IPTp-SP knowledge, stimulate early visits to ANC, improve access to health services and the quality of the service provided.


Subject(s)
Antimalarials/therapeutic use , Health Facilities , Insecticide-Treated Bednets , Pregnancy Complications, Parasitic/prevention & control , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Antimalarials/administration & dosage , Drug Combinations , Female , Humans , Labor, Obstetric , Pregnancy , Pyrimethamine/administration & dosage , Risk Factors , Sulfadoxine/administration & dosage , Young Adult
18.
Malar J ; 17(1): 119, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29554901

ABSTRACT

BACKGROUND: In Vietnam, malaria persists in remote forested regions where infections are spatially heterogeneous, mostly asymptomatic and with low parasite density. Previous studies in Vietnam have investigated broad behavioural concepts such as 'engaging in forest activities' as risk factors for malaria infection, which may not explain heterogeneity in malaria risk, especially in malaria elimination settings. METHODS: A mixed methods study combining ethnographic research and a cross-sectional survey was embedded in a 1-year malariometric cohort study in three ethnic minority villages in South Tra My district, Quang Nam Province in Central Vietnam. Qualitative data collection included in-depth interviews, informal conversations and participant observations over a 2-month period, and the findings were used to develop the questionnaire used in the cross-sectional survey. The latter collected data on evening activities, mobility patterns and household characteristics. The primary outcome, recent exposure to malaria, was defined using the classification and regression tree method to determine significant changes in antibody titres during the year preceding the survey. Risk factor analyses for recent exposure to malaria were conducted using logistic regression. RESULTS: 22 in-depth interviews and numerous participant observations were recorded during the ethnographic research (April to June 2015), and 160 adults (86% response rate) responded to the cross-sectional survey (November to December 2015). Recent exposure to Plasmodium falciparum malaria was estimated at 22.9 and at 17.1% for Plasmodium vivax. Ongoing malaria transmission appears to be maintained by activities that delay or disrupt sleeping in a permanent structure in which a bed net could be hung, including evening drinking gatherings, fishing, logging in the forest and outdoor TV watching. CONCLUSIONS: Vector control tools for outdoor evening activities in villages as well as at farms, forest and river locations should be incorporated into current malaria elimination efforts in Central Vietnam. Micro-epidemiology studies using mixed-methods designs can provide a comprehensive understanding of the malaria risk at fine spatial scales and better inform the implementation of targeted interventions for malaria elimination.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Adolescent , Adult , Cohort Studies , Cross-Sectional Studies , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Male , Risk Factors , Vietnam/epidemiology , Young Adult
19.
Malar J ; 17(1): 163, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29650007

ABSTRACT

BACKGROUND: Infants are thought to be protected against malaria during the first months of life mainly due to passage of maternal antibodies. However, in high transmission settings, malaria in early infancy is not uncommon and susceptibility to the infections varies between individuals. This study aimed to determine malaria morbidity and infection during early childhood in rural Burkina Faso. METHODS: Malariometric indices were determined over 1-year follow-up in a birth cohort of 734 infants living in Nanoro health district. Clinical malaria episodes were determined by passive case detection at peripheral health centres while asymptomatic malaria infections were identified during  4 cross-sectional surveys at 3, 6, 9 and 12 months of age. Plasmodium falciparum infections were detected by rapid diagnostic test and/or light microscopy (LM) and quantitative PCR (qPCR). RESULTS: In total, 717 clinical episodes were diagnosed by qPCR over 8335.18 person-months at risk. The overall malaria incidence was 1.03 per child-year and increased from 0.27 per child-year at 0-3 months of age to 1.92 per child-year at 9-12 months of age. Some 59% of children experienced at least one clinical episode with a median survival time estimated at 9.9 months, while 20% of infants experienced the first episode before 6 months of age. The majority of the clinical episodes were attributable to microscopic parasitaemia (84.2%), and there was a positive correlation between parasite density and age (Spearman's rho = 0.30; P < 0.0001). Prevalence of asymptomatic infections was similar at 3, 6 and 9 months of age (17.7-20.1%) and nearly 1.6 times higher at 12 months (31.3%). Importantly, gametocyte prevalence among the LM-positive study population was 6.7%, but increased to 10% among asymptomatic infections. In addition, 46% of asymptomatic infections were only detected by qPCR suggesting that infants below 1 year are a potential reservoir for sustaining malaria transmission. Both symptomatic and asymptomatic infections showed marked seasonal distribution with the highest transmission period (July to December) accounting for about 89 and 77% of those infections, respectively. CONCLUSIONS: These findings indicate high and marked age and seasonal-dependency of malaria infections and disease during the first year of life in Nanoro, calling for intensified efforts to control malaria in rural Burkina Faso.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Age Factors , Burkina Faso/epidemiology , Cohort Studies , Cross-Sectional Studies , Diagnostic Tests, Routine , Disease Susceptibility/epidemiology , Disease Susceptibility/parasitology , Humans , Incidence , Infant , Infant, Newborn , Longitudinal Studies , Malaria, Falciparum/parasitology , Microscopy , Morbidity , Polymerase Chain Reaction , Prevalence
20.
Malar J ; 17(1): 180, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29703200

ABSTRACT

BACKGROUND: In Vietnam, malaria transmission has been reduced to very low levels over the past 20 years, and as a consequence, the country aims to eliminate malaria by 2030. This study aimed to characterize the dynamics and extent of the parasite reservoir in Central Vietnam, in order to further target elimination strategies and surveillance. METHODS: A 1-year prospective cohort study (n = 429) was performed in three rural communities in Quang Nam province. Six malaria screenings were conducted between November 2014 and November 2015, including systematic clinical examination and blood sampling for malaria parasite identification, as well as molecular and serological analysis of the study population. Malaria infections were detected by light microscopy (LM) and quantitative real time PCR (qPCR), while exposure to Plasmodium falciparum and Plasmodium vivax was measured in the first and last survey by ELISA for PfAMA1, PfGLURP R2, PvAMA1, and PvMSP1-19. Classification and regression trees were used to define seropositivity and recent exposure. RESULTS: Four malaria infections (2 P. falciparum, 2 P. vivax) were detected in the same village by qPCR and/or LM. No fever cases were attributable to malaria. At the same time, the commune health centre (serving a larger area) reported few cases of confirmed malaria cases. Nevertheless, serological data proved that 13.5% of the surveyed population was exposed to P. falciparum and/or P. vivax parasites during the study period, of which 32.6% were seronegative at the start of the study, indicating ongoing transmission in the area. Risk factor analysis for seroprevalence and exposure to P. falciparum and/or P. vivax identified structural or economic risk factors and activity/behaviour-related factors, as well as spatial heterogeneity at the village level. CONCLUSIONS: Previous studies in Central Vietnam demonstrated high occurrence of asymptomatic and sub-microscopic infections. However, in this study very few asymptomatic infections were detected despite serological evidence of continued transmission. Nonetheless, the factors associated with spatial heterogeneity in transmission could be evaluated using serological classification of recent exposure, which supports the usefulness of serological methods to monitor malaria transmission.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Male , Microscopy , Middle Aged , Pilot Projects , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Prevalence , Prospective Studies , Real-Time Polymerase Chain Reaction , Risk Factors , Seroepidemiologic Studies , Vietnam/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL