Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Automatica (Oxf) ; 1472023 Jan.
Article in English | MEDLINE | ID: mdl-37781089

ABSTRACT

LQG control in Hilbert space, a novel approach for random abstract parabolic systems, and new transdermal alcohol biosensor technology are combined to yield tracking controllers that can be used to automate inpatient management of alcohol withdrawal syndrome and human subject intravenous alcohol infusion studies, and to blindly deconvolve blood or breath alcohol concentration from biosensor measured transdermal alcohol level. The approach taken is based on a full-body alcohol population model in the form of a random, nonlinear, hybrid system of ordinary and partial differential equations and its abstract formulation in a Gelfand triple of Bochner spaces. The efficacy of the approach is demonstrated through simulation studies based on laboratory collected drinking data.

2.
BMC Bioinformatics ; 20(1): 327, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31195954

ABSTRACT

BACKGROUND: The gap gene system controls the early cascade of the segmentation pathway in Drosophila melanogaster as well as other insects. Owing to its tractability and key role in embryo patterning, this system has been the focus for both computational modelers and experimentalists. The gap gene expression dynamics can be considered strictly as a one-dimensional process and modeled as a system of reaction-diffusion equations. While substantial progress has been made in modeling this phenomenon, there still remains a deficit of approaches to evaluate competing hypotheses. Most of the model development has happened in isolation and there has been little attempt to compare candidate models. RESULTS: The Bayesian framework offers a means of doing formal model evaluation. Here, we demonstrate how this framework can be used to compare different models of gene expression. We focus on the Papatsenko-Levine formalism, which exploits a fractional occupancy based approach to incorporate activation of the gap genes by the maternal genes and cross-regulation by the gap genes themselves. The Bayesian approach provides insight about relationship between system parameters. In the regulatory pathway of segmentation, the parameters for number of binding sites and binding affinity have a negative correlation. The model selection analysis supports a stronger binding affinity for Bicoid compared to other regulatory edges, as shown by a larger posterior mean. The procedure doesn't show support for activation of Kruppel by Bicoid. CONCLUSIONS: We provide an efficient solver for the general representation of the Papatsenko-Levine model. We also demonstrate the utility of Bayes factor for evaluating candidate models for spatial pattering models. In addition, by using the parallel tempering sampler, the convergence of Markov chains can be remarkably improved and robust estimates of Bayes factors obtained.


Subject(s)
Drosophila melanogaster/genetics , Gene Regulatory Networks , Animals , Bayes Theorem , Drosophila Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Likelihood Functions , Markov Chains , Models, Genetic , Monte Carlo Method
3.
Alcohol Alcohol ; 50(2): 180-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25568142

ABSTRACT

AIMS: We report on the development of a real-time assessment protocol that allows researchers to assess change in BrAC, alcohol responses, behaviors, and contexts over the course of a drinking event. METHOD: We designed a web application that uses timed text messages (adjusted based on consumption pattern) containing links to our website to obtain real-time participant reports; camera and location features were also incorporated into the protocol. We used a transdermal alcohol sensor device along with software we designed to convert transdermal data into estimated BrAC. Thirty-two college students completed a laboratory session followed by a 2-week field trial. RESULTS: Results for the web application indicated we were able to create an effective tool for obtaining repeated measures real-time drinking data. Participants were willing to monitor their drinking behavior with the web application, and this did not appear to strongly affect drinking behavior during, or 6 weeks following, the field trial. Results for the transdermal device highlighted the willingness of participants to wear the device despite some discomfort, but technical difficulties resulted in limited valid data. CONCLUSION: The development of this protocol makes it possible to capture detailed assessment of change over the course of naturalistic drinking episodes.


Subject(s)
Alcohol Drinking/metabolism , Ethanol/analysis , Internet , Mobile Applications , Skin/metabolism , Students , Text Messaging , Adult , Alcohol Drinking/psychology , Electrochemical Techniques , Female , Humans , Male , Patient Acceptance of Health Care , Universities , Young Adult
4.
Alcohol Clin Exp Res ; 38(8): 2243-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25156615

ABSTRACT

BACKGROUND: Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. METHODS: Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. RESULTS: In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. CONCLUSIONS: This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become.


Subject(s)
Breath Tests , Ethanol/blood , Software , Substance Abuse Detection/methods , Female , Humans , Models, Biological , Substance Abuse Detection/instrumentation , Substance Abuse Detection/statistics & numerical data
5.
Neural Comput Appl ; 34(21): 18933-18951, 2022 Nov.
Article in English | MEDLINE | ID: mdl-37873546

ABSTRACT

The problem of estimating breath alcohol concentration based on transdermal alcohol biosensor data is considered. Transdermal alcohol concentration provides a promising alternative to classical methods such as breathalyzers or drinking diaries. A physics-informed long Short-term memory (LSTM) network with covariates for the solution of the estimation problem is developed. The data-driven nature of an LSTM is augmented with a first principles physics-based population model for the diffusion of ethanol through the epidermal layer of the skin. The population model in an abstract parabolic framework appears as part of a regularization term in the loss function of the LSTM. While learning, the model is encouraged to both fit the data and to produce physically meaningful outputs. To deal with the high variation observed in the data, a mechanism for the uncertainty quantification of the estimates based on a recently discovered relation between Monte-Carlo dropout and Bayesian learning is used. The physics-based population model and the LSTM are trained and tested using controlled laboratory collected breath and transdermal alcohol data collected in four sessions from 40 orally dosed participants (50% female, ages 21 - 33 years, 35% BMI above 25.0) resulting in 256 usable drinking episodes partitioned into training and testing sets. Body measurement (e.g. BMI, hip to waist ratio, etc.), personal (e.g. sex, age, race, etc.), drinking behavior (e.g. frequent, rarely, etc.), and environmental (e.g. temperature, humidity, etc.) covariates were also collected from participants. The importance of various covariates in the estimation is investigated using Shapley values. It is shown that the physics-informed LSTM network can be successfully applied to drinking episodes from both the training and test set, and that the physics-based information leads to better generalization ability on new drinking episodes with the uncertainty quantification yielding credible bands that effectively capture the true signal. Compared to two machine learning models from previous studies, the proposed model reduces relative L2 error in estimated breath alcohol concentration by 58% and 72%, and relative peak error by 33% and 76%.

6.
Drug Alcohol Rev ; 40(7): 1131-1142, 2021 11.
Article in English | MEDLINE | ID: mdl-33713037

ABSTRACT

INTRODUCTION: Wearable devices that obtain transdermal alcohol concentration (TAC) could become valuable research tools for monitoring alcohol consumption levels in naturalistic environments if the TAC they produce could be converted into quantitatively-meaningful estimates of breath alcohol concentration (eBrAC). Our team has developed mathematical models to produce eBrAC from TAC, but it is not yet clear how a variety of factors affect the accuracy of the models. Stomach content is one factor that is known to affect breath alcohol concentration (BrAC), but its effect on the BrAC-TAC relationship has not yet been studied. METHODS: We examine the BrAC-TAC relationship by having two investigators participate in four laboratory drinking sessions with varied stomach content conditions: (i) no meal, (ii) half and (iii) full meal before drinking, and (iv) full meal after drinking. BrAC and TAC were obtained every 10 min over the BrAC curve. RESULTS: Eating before drinking lowered BrAC and TAC levels, with greater variability in TAC across person-device pairings, but the BrAC-TAC relationship was not consistently altered by stomach content. The mathematical model calibration parameters, fit indices, and eBrAC curves and summary score outputs did not consistently vary based on stomach content, indicating that our models were able to produce eBrAC from TAC with similar accuracy despite variations in the shape and magnitude of the BrAC curves under different conditions. DISCUSSION AND CONCLUSIONS: This study represents the first examination of how stomach content affects our ability to model estimates of BrAC from TAC and indicates it is not a major factor.


Subject(s)
Alcohol Drinking , Gastrointestinal Contents , Breath Tests , Ethanol , Humans
7.
Alcohol ; 81: 111-116, 2019 12.
Article in English | MEDLINE | ID: mdl-30179707

ABSTRACT

Transdermal alcohol sensors offer enormous promise for the continuous, objective assessment of alcohol use. Although these sensors have been employed as abstinence monitors for some time now, it is only recently that models have been developed aimed at allowing researchers to derive estimates of the precise amount and time course of drinking, directly from transdermal data. Using data from a combined laboratory-ambulatory study, the current research aims to examine the validity of recently developed methods for estimating BrAC (breath alcohol concentration) directly from transdermal data. Forty-eight heavy social drinkers engaged in 7 days of ambulatory assessment outside the laboratory, and also participated in a laboratory alcohol-administration session. Participants wore the SCRAM transdermal sensor throughout the study, and during the 7 days of ambulatory assessment, they provided daily self-reports of their drinking and also took randomly prompted photographs 6 times per day, which were then evaluated for evidence of alcohol consumption. Results indicated strong associations between daily self-reports of drinking quantity and estimates of BrAC derived from transdermal sensors at both the between- and within-subject level. Data from randomly prompted photos indicated that the time course of estimated BrAC also had validity. Results offer promise for novel methods of estimating BrAC from transdermal data, including those taking a nomothetic (population-based) approach to this estimation, thus potentially adding to our arsenal of techniques for understanding, diagnosing, and ultimately treating alcohol use disorder.


Subject(s)
Alcohol Drinking/metabolism , Ethanol/analysis , Wearable Electronic Devices , Adult , Female , Humans , Male , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Time Factors , Young Adult
8.
Alcohol ; 81: 117-129, 2019 12.
Article in English | MEDLINE | ID: mdl-30244026

ABSTRACT

Alcohol biosensor devices have been developed to unobtrusively measure transdermal alcohol concentration (TAC), the amount of ethanol diffusing through the skin, in nearly continuous fashion in naturalistic settings. Because TAC data are affected by physiological and environmental factors that vary across individuals and drinking episodes, there is not an elementary formula to convert TAC into easily interpretable metrics such as blood and breath alcohol concentrations (BAC/BrAC). In our prior work, we addressed this conversion problem in a deterministic way by developing physics/physiological-based models to convert TAC to estimated BrAC (eBrAC), in which the model parameter values were individually determined for each person wearing a specific transdermal sensor using simultaneously collected TAC (via a biosensor) and BrAC (via a breath analyzer) during a calibration episode. We found these individualized parameter values produced relatively good eBrAC curves for subsequent drinking episodes, but our results also indicated the models were not fully capturing the dynamics of the system and variations across drinking episodes. Here, we report on a novel mathematical framework to improve our ability to model eBrAC from TAC data that uses aggregate population data instead of individualized calibration data to determine model parameter values via a random diffusion equation. We first provide the theoretical mathematical basis for our approach, and then test the efficacy of this method using datasets of contemporaneous BrAC/TAC measurements obtained by a) a single subject during multiple drinking episodes and b) multiple subjects during single drinking episodes. For each dataset, we used a set of drinking episodes to construct the population model, and then ran the model with another set of randomly selected test episodes. We compared raw TAC data to model-simulated TAC curve, breath analyzer BrAC data to model eBrAC curve with 75% credible bands, episode summary scores of peak BrAC, times of peak BrAC, and area under the drinking curve also with 75% credible intervals, and report the percent of the raw BrAC captured within the eBrAC curve credible bands. We also display results when stratifying the data based on the relationship between the raw BrAC and TAC data. Results indicate the population-based model is promising, with better fit within a single participant when stratifying episodes. This study provides initial proof-of-concept for constructing, fitting, and using a population-based model to obtain estimates and error bands for BrAC from TAC. The advancements in this study, including new applications of math, the development of a population-based model with error bars, and the production of corresponding MATLAB codes, represent a major step forward in our ability to produce quantitatively- and temporally-accurate estimates of BrAC from TAC biosensor data.


Subject(s)
Biosensing Techniques/instrumentation , Breath Tests , Ethanol/analysis , Wearable Electronic Devices , Biosensing Techniques/methods , Female , Humans , Male , Models, Statistical , Young Adult
9.
Addict Behav ; 83: 48-55, 2018 08.
Article in English | MEDLINE | ID: mdl-29233567

ABSTRACT

Biosensors have been developed to measure transdermal alcohol concentration (TAC), but converting TAC into interpretable indices of blood/breath alcohol concentration (BAC/BrAC) is difficult because of variations that occur in TAC across individuals, drinking episodes, and devices. We have developed mathematical models and the BrAC Estimator software for calibrating and inverting TAC into quantifiable BrAC estimates (eBrAC). The calibration protocol to determine the individualized parameters for a specific individual wearing a specific device requires a drinking session in which BrAC and TAC measurements are obtained simultaneously. This calibration protocol was originally conducted in the laboratory with breath analyzers used to produce the BrAC data. Here we develop and test an alternative calibration protocol using drinking diary data collected in the field with the smartphone app Intellidrink to produce the BrAC calibration data. We compared BrAC Estimator software results for 11 drinking episodes collected by an expert user when using Intellidrink versus breath analyzer measurements as BrAC calibration data. Inversion phase results indicated the Intellidrink calibration protocol produced similar eBrAC curves and captured peak eBrAC to within 0.0003%, time of peak eBrAC to within 18min, and area under the eBrAC curve to within 0.025% alcohol-hours as the breath analyzer calibration protocol. This study provides evidence that drinking diary data can be used in place of breath analyzer data in the BrAC Estimator software calibration procedure, which can reduce participant and researcher burden and expand the potential software user pool beyond researchers studying participants who can drink in the laboratory.


Subject(s)
Alcohol Drinking/metabolism , Biosensing Techniques/instrumentation , Blood Alcohol Content , Breath Tests/instrumentation , Breath Tests/methods , Mobile Applications , Skin/metabolism , Adult , Biosensing Techniques/methods , Female , Humans , Male , Reproducibility of Results , Smartphone , Software , Time Factors
10.
J Abnorm Psychol ; 127(4): 359-373, 2018 05.
Article in English | MEDLINE | ID: mdl-29745701

ABSTRACT

Regular alcohol consumption in unfamiliar social settings has been linked to problematic drinking. A large body of indirect evidence has accumulated to suggest that alcohol's rewarding emotional effects-both negative-mood relieving and positive-mood enhancing-will be magnified when alcohol is consumed within unfamiliar versus familiar social contexts. But empirical research has never directly examined links between contextual familiarity and alcohol reward. In the current study, we mobilized novel ambulatory technology to examine the effect of social familiarity on alcohol reward in everyday drinking contexts while also examining how alcohol reward observed in these field contexts corresponds to reward observed in the laboratory. Heavy social drinking participants (N = 48, 50% male) engaged in an intensive week of ambulatory assessment. Participants wore transdermal alcohol sensors while they reported on their mood and took photographs of their social contexts in response to random prompts. Participants also attended 2 laboratory beverage-administration sessions, during which their emotional responses were assessed and transdermal sensors were calibrated to estimate breathalyzer readings (eBrACs). Results indicated a significant interaction between social familiarity and alcohol episode in everyday drinking settings, with alcohol enhancing mood to a greater extent in relatively unfamiliar versus familiar social contexts. Findings also indicated that drinking in relatively unfamiliar social settings was associated with higher eBrACs. Finally, results indicated a correspondence between some mood effects of alcohol experienced inside and outside the laboratory. This study presents a novel methodology for examining alcohol reward and indicates social familiarity as a promising direction for research seeking to explain problematic drinking. (PsycINFO Database Record


Subject(s)
Affect , Alcohol Drinking/psychology , Reward , Social Behavior , Adult , Biosensing Techniques , Female , Humans , Male , Recognition, Psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL