Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 607(7918): 356-359, 2022 07.
Article in English | MEDLINE | ID: mdl-35523247

ABSTRACT

The extent to which Omicron infection1-9, with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3-9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19-27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Ad26COVS1/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Protection/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
2.
Proc Natl Acad Sci U S A ; 120(10): e2204892120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848563

ABSTRACT

Wild mammals are icons of conservation efforts, yet there is no rigorous estimate available for their overall global biomass. Biomass as a metric allows us to compare species with very different body sizes, and can serve as an indicator of wild mammal presence, trends, and impacts, on a global scale. Here, we compiled estimates of the total abundance (i.e., the number of individuals) of several hundred mammal species from the available data, and used these to build a model that infers the total biomass of terrestrial mammal species for which the global abundance is unknown. We present a detailed assessment, arriving at a total wet biomass of ≈20 million tonnes (Mt) for all terrestrial wild mammals (95% CI 13-38 Mt), i.e., ≈3 kg per person on earth. The primary contributors to the biomass of wild land mammals are large herbivores such as the white-tailed deer, wild boar, and African elephant. We find that even-hoofed mammals (artiodactyls, such as deer and boars) represent about half of the combined mass of terrestrial wild mammals. In addition, we estimated the total biomass of wild marine mammals at ≈40 Mt (95% CI 20-80 Mt), with baleen whales comprising more than half of this mass. In order to put wild mammal biomass into perspective, we additionally estimate the biomass of the remaining members of the class Mammalia. The total mammal biomass is overwhelmingly dominated by livestock (≈630 Mt) and humans (≈390 Mt). This work is a provisional census of wild mammal biomass on Earth and can serve as a benchmark for human impacts.


Subject(s)
Caniformia , Deer , Humans , Animals , Swine , Biomass , Cetacea , Sus scrofa
4.
Opt Express ; 28(3): 3107-3115, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32121985

ABSTRACT

Soliton self-frequency shifting of light pulses in fibers is used for versatile tunable light sources. Few-cycle pulses of high soliton number offer unique advantages, in particular the rate of Raman frequency shift is extremely fast. However, their dynamics is complicated, which makes the optimization of the frequency shifting difficult and sometimes counter-intuitive. We performed a systematic experimental study of the effects of initial prechirp for different pulse energies (for two different fibers). We found that a negative prechirp around C=-0.75 is the most effective (C being the chirp parameter). With such prechirping we managed to cross the severe OH absorption bands of nonlinear photonic crystal fibers. The mechanism behind the effectiveness of the prechirp appears to be the power distribution between the products of soliton fission.

5.
Philos Trans A Math Phys Eng Sci ; 378(2177): 20190232, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32684128

ABSTRACT

Hawking radiation is unlikely to be measured from a real black hole, but can be tested in laboratory analogues. It was predicted as a consequence of quantum mechanics and general relativity, but turned out to be more universal. A refractive index perturbation produces an optical analogue of the black-hole horizon and Hawking radiation that is made of light. We discuss the central and recent experiments of the optical analogue, using hands-on physics. We stress the roles of classical fields, negative frequencies, 'regular optics' and dispersion. Opportunities and challenges ahead are briefly mentioned. This article is part of a discussion meeting issue 'The next generation of analogue gravity experiments'.

6.
Opt Lett ; 44(1): 85, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645564

ABSTRACT

In a recent Letter [Opt. Lett.43, 2571 (2018)OPLEDP0146-959210.1364/OL.43.002571], Vengelis et al. have claimed to implement a new experimental technique for measuring the phase refractive index of a photonic crystal fiber mode. Unfortunately, while the experimental effort is appreciated, one of the key assumptions was inaccurate. Taking this error into account reveals that the measured value was the fiber's group index, rather than its phase refractive index.

7.
Phys Rev Lett ; 122(1): 010404, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012667

ABSTRACT

The theory of Hawking radiation can be tested in laboratory analogues of black holes. We use light pulses in nonlinear fiber optics to establish artificial event horizons. Each pulse generates a moving perturbation of the refractive index via the Kerr effect. Probe light perceives this as an event horizon when its group velocity, slowed down by the perturbation, matches the speed of the pulse. We have observed in our experiment that the probe stimulates Hawking radiation, which occurs in a regime of extreme nonlinear fiber optics where positive and negative frequencies mix.

8.
Sci Adv ; 9(5): eabq4049, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36735788

ABSTRACT

Insects and other arthropods are central to terrestrial ecosystems. However, data are lacking regarding their global population abundance. We synthesized thousands of evaluations from around 500 sites worldwide, estimating the absolute biomass and abundance of terrestrial arthropods across different taxa and habitats. We found that there are ≈1 × 1019 (twofold uncertainty range) soil arthropods on Earth, ≈95% of which are soil mites and springtails. The soil contains ≈200 (twofold uncertainty range) million metric tons (Mt) of dry biomass. Termites contribute ≈40% of the soil biomass, much more than ants at ≈10%. Our estimate for the global biomass of above-ground arthropods is more uncertain, highlighting a knowledge gap that future research should aim to close. We estimate the combined dry biomass of all terrestrial arthropods at ≈300 Mt (uncertainty range, 100 to 500), similar to the mass of humanity and its livestock. These estimates enhance the quantitative understanding of arthropods in terrestrial ecosystems and provide an initial holistic benchmark on their decline.


Subject(s)
Arthropods , Animals , Biomass , Ecosystem , Insecta , Soil
9.
medRxiv ; 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-34981076

ABSTRACT

Omicron variant (B.1.1.529) infections are rapidly expanding worldwide, often in settings where the Delta variant (B.1.617.2) was dominant. We investigated whether neutralizing immunity elicited by Omicron infection would also neutralize the Delta variant and the role of prior vaccination. We enrolled 23 South African participants infected with Omicron a median of 5 days post-symptoms onset (study baseline) with a last follow-up sample taken a median of 23 days post-symptoms onset. Ten participants were breakthrough cases vaccinated with Pfizer BNT162b2 or Johnson and Johnson Ad26.CoV2.S. In vaccinated participants, neutralization of Omicron increased from a geometric mean titer (GMT) FRNT50 of 28 to 378 (13.7-fold). Unvaccinated participants had similar Omicron neutralization at baseline but increased from 26 to only 113 (4.4-fold) at follow-up. Delta virus neutralization increased from 129 to 790, (6.1-fold) in vaccinated but only 18 to 46 (2.5-fold, not statistically significant) in unvaccinated participants. Therefore, in Omicron infected vaccinated individuals, Delta neutralization was 2.1-fold higher at follow-up relative to Omicron. In a separate group previously infected with Delta, neutralization of Delta was 22.5-fold higher than Omicron. Based on relative neutralization levels, Omicron re-infection would be expected to be more likely than Delta in Delta infected individuals, and in Omicron infected individuals who are vaccinated. This may give Omicron an advantage over Delta which may lead to decreasing Delta infections in regions with high infection frequencies and high vaccine coverage.

SELECTION OF CITATIONS
SEARCH DETAIL