Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Water Res ; 250: 121016, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38134857

ABSTRACT

Nitrogen (N) compounds can occur in water resources from natural and anthropogenic activities. It is ideal that these contaminants be removed before water consumption. As water quality has been affected by increased salinity and pH variation, more advanced and robust technologies such as electrodialysis (ED) can be considered for simultaneous desalination and pollutant removal. In this context, the removal of N-species (NO3-, NO2-, NH4+, and CH4N2O) from brackish water by ED was investigated for different feed water quality, considering increased salinity (0 - 10g/L NaCl) and pH variation (3 - 11), under limit current density (LCD) at fixed electric potential condition. The applied electric potential (5 - 25V) under, at, and over the LCD at fixed electric potential and dynamic current density (DCD), as a percentage of LCD (0.4 - 1.2), were analyzed to improve the process. In addition, energy efficiency in the form of specific energy consumption (SEC) and current efficiency (CE) were assessed for ED at fixed electric potential and DCD. The results showed that, at extreme pH of the feed water, the removal of NO2- and NH4+ can be affected, while NO3-was the most stable compound with pH variation. An increase in feed water salinity just slightly impacted the removal of N-compounds, due to the similar characteristics of the ions in the water. The increase in electric potential at fixed electric potential or DCD increased the removal and molar flux of N-compounds. However, operating over the LCD increased the SEC of the ED process while changes in removal were not significant. DCD procedures resulted in higher CE and shorter run time of the experiments. Therefore, ED proved to be a suitable treatment technique to produce fresh water due to the selective removal of the studied ions, especially at 15V (fixed electrical potential) and 0.8 LCD (DCD) related to removal, molar flux, and run time to achieve guidelines.


Subject(s)
Nitrogen Compounds , Nitrogen Dioxide , Ions , Electricity , Nitrogen , Saline Waters
2.
Membranes (Basel) ; 11(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673190

ABSTRACT

Saline groundwater (SGW) is an alternative water resource. However, the concentration of sodium, chloride, sulphate, and nitrate in SGW usually exceeds the recommended guideline values for drinking water and irrigation. In this study, the partial desalination performance of three different concentrated SGWs were examined by pressure-driven membrane desalination technologies: nanofiltration (NF), brackish water reverse osmosis (BWRO), and seawater reverse osmosis (SWRO); in addition to one electrochemical-driven desalination technology: membrane capacitive deionisation (MCDI). The desalination performance was evaluated using the specific energy consumption (SEC) and water recovery, determined by experiments and simulations. The experimental results of this study show that the SEC for the desalination of SGW with a total dissolved solid (TDS) concentration of 1 g/L by MCDI and NF is similar and ranges between 0.2-0.4 kWh/m3 achieving a water recovery value of 35-70%. The lowest SECs for the desalination of SGW with a TDS concentration ≥2 g/L were determined by the use of BWRO and SWRO with 0.4-2.9 kWh/m3 for a water recovery of 40-66%. Even though the MCDI technique cannot compete with pressure-driven membrane desalination technologies at higher raw water salinities, this technology shows a high selectivity for nitrate and a high potential for flexible desalination applications.

SELECTION OF CITATIONS
SEARCH DETAIL