Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 585(7824): 283-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32814897

ABSTRACT

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Subject(s)
Aging/metabolism , Disease Progression , Methylmalonic Acid/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Adult , Aged , Aging/blood , Aging/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Methylmalonic Acid/blood , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/blood , Neoplasms/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
2.
ACS Infect Dis ; 10(5): 1536-1544, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38626307

ABSTRACT

Cilagicin is a dual polyprenyl phosphate binding lipodepsipeptide antibiotic with strong activity against clinically relevant Gram-positive pathogens while evading antibiotic resistance. Cilagicin showed high serum binding that reduced its in vivo efficacy. Cilagicin-BP, which contains a biphenyl moiety in place of the N-terminal myristic acid found on cilagicin, showed reduced serum binding and increased in vivo efficacy but decreased potency against some pathogens. Here, we manipulated the acyl tail and the peptide core of cilagicin to identify an optimized collection of structural features that maintain potent antibiotic activity against a wide range of pathogens in the presence of serum. This led to the identification of the optimized antibiotic dodecacilagicin, which contains an N-terminal dodecanoic acid. Dodecacilagicin exhibits low MICs against clinically relevant pathogens in the presence of serum, retains polyprenyl phosphate binding, and evades resistance development even after long-term antibiotic exposure, making dodecacilagicin an appealing candidate for further therapeutic development.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Drug Resistance, Bacterial/drug effects , Depsipeptides/pharmacology , Depsipeptides/chemistry , Gram-Positive Bacteria/drug effects
3.
Org Lett ; 26(21): 4433-4437, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767867

ABSTRACT

Most biosynthetic gene clusters (BGCs) are functionally inaccessible by using fermentation methods. Bioinformatic-coupled total synthesis provides an alternative approach for accessing BGC-encoded bioactivities. To date, synthetic bioinformatic natural product (synBNP) methods have focused on lipopeptides containing simple lipids. Here we increase the bioinformatic and synthetic complexity of the synBNP approach by targeting BGCs that encode N-cinnamoyl lipids. This led to our synthesis of cinnamosyn, a 10-mer N-cinnamoyl-containing peptide that is cytotoxic to human cells.


Subject(s)
Biological Products , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/chemical synthesis , Humans , Molecular Structure , Computational Biology , Multigene Family , Lipopeptides/chemistry , Lipopeptides/pharmacology , Lipopeptides/chemical synthesis , Cinnamates/chemistry , Cinnamates/pharmacology , Cinnamates/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
4.
Curr Opin Microbiol ; 75: 102335, 2023 10.
Article in English | MEDLINE | ID: mdl-37327680

ABSTRACT

Novel antibiotics are in constant demand to combat a global increase in antibiotic-resistant infections. Bacterial natural products have been a long-standing source of antibiotic compounds, and metagenomic mining of environmental DNA (eDNA) has increasingly provided new antibiotic leads. The metagenomic small-molecule discovery pipeline can be divided into three main steps: surveying eDNA, retrieving a sequence of interest, and accessing the encoded natural product. Improvements in sequencing technology, bioinformatic algorithms, and methods for converting biosynthetic gene clusters into small molecules are steadily increasing our ability to discover metagenomically encoded antibiotics. We predict that, over the next decade, ongoing technological improvements will dramatically increase the rate at which antibiotics are discovered from metagenomes.


Subject(s)
Biological Products , DNA, Environmental , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Metagenomics , Multigene Family
5.
ACS Infect Dis ; 9(12): 2394-2400, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37937847

ABSTRACT

Cilagicin is a Gram-positive active antibiotic that has a dual polyprenyl phosphate binding mechanism that impedes resistance development. Here we bioinformatically screened predicted non-ribosomal polypeptide synthetase encoded structures to search for antibiotics that might similarly avoid resistance development. Synthesis and bioactivity screening of the predicted structures that we identified led to three antibiotics that are active against multidrug-resistant Gram-positive pathogens, two of which, paenilagicin and virgilagicin, did not lead to resistance even after prolonged antibiotic exposure.


Subject(s)
Anti-Bacterial Agents , Polyisoprenyl Phosphates , Anti-Bacterial Agents/pharmacology , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/metabolism , Phosphates
6.
Nat Metab ; 4(4): 435-443, 2022 04.
Article in English | MEDLINE | ID: mdl-35361954

ABSTRACT

The alteration of metabolic pathways is a critical strategy for cancer cells to attain the traits necessary for metastasis in disease progression. Here, we find that dysregulation of propionate metabolism produces a pro-aggressive signature in breast and lung cancer cells, increasing their metastatic potential. This occurs through the downregulation of methylmalonyl coenzyme A epimerase (MCEE), mediated by an extracellular signal-regulated kinase 2-driven transcription factor Sp1/early growth response protein 1 transcriptional switch driven by metastatic signalling at its promoter level. The loss of MCEE results in reduced propionate-driven anaplerotic flux and intracellular and intratumoral accumulation of methylmalonic acid, a by-product of propionate metabolism that promotes cancer cell invasiveness. Altogether, we present a previously uncharacterized dysregulation of propionate metabolism as an important contributor to cancer and a valuable potential target in the therapeutic treatment of metastatic carcinomas.


Subject(s)
Neoplasms , Propionates , Humans , Methylmalonic Acid/metabolism , Phenotype , Propionates/pharmacology , Signal Transduction
7.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31564638

ABSTRACT

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Subject(s)
Carcinoma/pathology , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Histones/metabolism , Neoplasm Metastasis/genetics , Animals , Carcinogenesis/genetics , Carcinoma/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Disease Progression , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Female , Histones/genetics , Humans , Male , Mice , Promoter Regions, Genetic/genetics , RNA-Seq , Transcription Factors/genetics , Xenograft Model Antitumor Assays
8.
Front Cell Dev Biol ; 6: 90, 2018.
Article in English | MEDLINE | ID: mdl-30159313

ABSTRACT

Altered metabolism in cancer cells is critical for tumor growth. One of the most notable aspects of this metabolic reprogramming lies in one-carbon metabolism. Cells require one-carbon units for nucleotide synthesis, methylation reactions, and for the generation of reducing cofactors. Therefore, the ability to rewire and fine-tune one-carbon metabolism is essential for the maintenance of cellular homeostasis. In this review, we describe how the major nutrient, energy, and redox sensors of the cell play a significant role in the regulation of flux through one-carbon metabolism to enable cell fate decisions. We will also discuss how dysregulated oncogenic signaling hijacks these regulatory mechanisms to support and sustain high rates of proliferation and cell survival essential for tumor growth.

SELECTION OF CITATIONS
SEARCH DETAIL