Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Microb Pathog ; 155: 104919, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33915206

ABSTRACT

Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.


Subject(s)
Burkholderia mallei , Burkholderia pseudomallei , Glanders , Melioidosis , Aerosols , Animals , Chlorocebus aethiops , Disease Models, Animal , Glanders/diagnosis , Horses , Macaca mulatta
2.
J Infect Dis ; 218(suppl_5): S612-S626, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29860496

ABSTRACT

Background: For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods: In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results: Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions: This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Animals , Antibodies, Monoclonal/isolation & purification , Glycoproteins/immunology , Guinea Pigs , HEK293 Cells , Humans , Macaca mulatta , Male , Mice
3.
Emerg Infect Dis ; 23(8): 1274-1281, 2017 08.
Article in English | MEDLINE | ID: mdl-28548637

ABSTRACT

Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.


Subject(s)
Macaca fascicularis , Macaca mulatta , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Female , Male , Vagina , Virus Replication , Virus Shedding , Zika Virus Infection/transmission
4.
Viruses ; 15(12)2023 11 28.
Article in English | MEDLINE | ID: mdl-38140576

ABSTRACT

Marburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model. Twelve cynomolgus macaques were exposed to a target dose of 1000 plaque-forming units MARV by the intramuscular route, and six control animals were mock-exposed. The primary endpoint of this study was survival to Day 28 post-inoculation (PI). Anesthesia events were minimized with the use of central venous catheters for periodic blood collection, and temperature and activity were continuously monitored by telemetry. All mock-exposed animals remained healthy for the duration of the study. All 12 MARV-exposed animals (100%) became infected, developed illness, and succumbed on Days 8-10 PI. On Day 4 PI, 11 of the 12 MARV-exposed animals had statistically significant temperature elevations over baseline. Clinically observable signs of MARV disease first appeared on Day 5 PI, when 6 of the 12 animals exhibited reduced responsiveness. Ultimately, systemic inflammation, coagulopathy, and direct cytopathic effects of MARV all contributed to multiorgan dysfunction, organ failure, and death or euthanasia of all MARV-exposed animals. Manifestations of MARV disease, including fever, systemic viremia, lymphocytolysis, coagulopathy, and hepatocellular damage, could be used as triggers for initiation of treatment in future therapeutic efficacy studies.


Subject(s)
Marburg Virus Disease , Marburgvirus , Humans , Animals , Macaca fascicularis , Viremia , Liver
5.
NPJ Vaccines ; 7(1): 46, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35459271

ABSTRACT

We have previously shown that DNA vaccines expressing codon optimized alphavirus envelope glycoprotein genes protect both mice and nonhuman primates from viral challenge when delivered by particle-mediated epidermal delivery (PMED) or intramuscular (IM) electroporation (EP). Another technology with fewer logistical drawbacks is disposable syringe jet injection (DSJI) devices developed by PharmaJet, Inc. These needle-free jet injection systems are spring-powered and capable of delivering vaccines either IM or into the dermis (ID). Here, we evaluated the immunogenicity of our Venezuelan equine encephalitis virus (VEEV) DNA vaccine delivered by either the IM- or ID-DSJI devices in nonhuman primates. The protective efficacy was assessed following aerosol challenge. We found that a prime and single boost by either the IM or ID route resulted in humoral and cellular immune responses that provided significant protection against disease and viremia. Although the ID route utilized one-fifth the DNA dose used in the IM route of vaccination, and the measured humoral and cellular immune responses trended lower, the level of protection was high and performed as well as the IM route for several clinical endpoints.

6.
Sci Transl Med ; 14(631): eabi5229, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35138912

ABSTRACT

Effective therapeutics have been developed against acute Ebola virus disease (EVD) in both humans and experimentally infected nonhuman primates. However, the risk of viral persistence and associated disease recrudescence in survivors receiving these therapeutics remains unclear. In contrast to rhesus macaques that survived Ebola virus (EBOV) exposure in the absence of treatment, we discovered that EBOV, despite being cleared from all other organs, persisted in the brain ventricular system of rhesus macaque survivors that had received monoclonal antibody (mAb) treatment. In mAb-treated macaque survivors, EBOV persisted in macrophages infiltrating the brain ventricular system, including the choroid plexuses. This macrophage infiltration was accompanied by severe tissue damage, including ventriculitis, choroid plexitis, and meningoencephalitis. Specifically, choroid plexus endothelium-derived EBOV infection led to viral persistence in the macaque brain ventricular system. This resulted in apoptosis of ependymal cells, which constitute the blood-cerebrospinal fluid barrier of the choroid plexuses. Fatal brain-confined recrudescence of EBOV infection manifested as severe inflammation, local pathology, and widespread infection of the ventricular system and adjacent neuropil in some of the mAb-treated macaque survivors. This study highlights organ-specific EBOV persistence and fatal recrudescent disease in rhesus macaque survivors after therapeutic treatment and has implications for the long-term follow-up of human survivors of EVD.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Antibodies, Monoclonal , Brain , Humans , Macaca mulatta , Recurrence , Survivors
7.
Viruses ; 14(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35632755

ABSTRACT

The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.


Subject(s)
COVID-19 , Aerosols , Animals , Disease Models, Animal , Macaca fascicularis , SARS-CoV-2 , Severity of Illness Index
8.
PLoS Negl Trop Dis ; 15(6): e0009424, 2021 06.
Article in English | MEDLINE | ID: mdl-34138849

ABSTRACT

Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30-90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0-4.2°C), respiration rate (+56-128%), activity (-15-76% daytime and +5-22% nighttime), heart rate (+67-190%), systolic (+44-67%) and diastolic blood pressure (+45-80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (~12-24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106-140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.


Subject(s)
Alphavirus Infections/virology , Disease Models, Animal , Electroencephalography , Encephalitis Virus, Eastern Equine , Monitoring, Physiologic/instrumentation , Telemetry/instrumentation , Aerosols , Alphavirus Infections/pathology , Animals , Blood Pressure , Body Temperature , Chlorocebus aethiops , Female , Heart Rate , Humans , Macaca fascicularis , Male , Monitoring, Physiologic/methods , Motor Activity , Respiratory Physiological Phenomena , Telemetry/methods , Vero Cells
9.
PLoS Negl Trop Dis ; 14(6): e0008107, 2020 06.
Article in English | MEDLINE | ID: mdl-32569276

ABSTRACT

Mosquito-borne and sexual transmission of Zika virus (ZIKV), a TORCH pathogen, recently initiated a series of large epidemics throughout the Tropics. Animal models are necessary to determine transmission risk and study pathogenesis, as well screen antivirals and vaccine candidates. In this study, we modeled mosquito and sexual transmission of ZIKV in the African green monkey (AGM). Following subcutaneous, intravaginal or intrarectal inoculation of AGMs with ZIKV, we determined the transmission potential and infection dynamics of the virus. AGMs inoculated by all three transmission routes exhibited viremia and viral shedding followed by strong virus neutralizing antibody responses, in the absence of clinical illness. All four of the subcutaneously inoculated AGMs became infected (mean peak viremia: 2.9 log10 PFU/mL, mean duration: 4.3 days) and vRNA was detected in their oral swabs, with infectious virus being detected in a subset of these specimens. Although all four of the intravaginally inoculated AGMs developed virus neutralizing antibody responses, only three had detectable viremia (mean peak viremia: 4.0 log10 PFU/mL, mean duration: 3.0 days). These three AGMs also had vRNA and infectious virus detected in both oral and vaginal swabs. Two of the four intrarectally inoculated AGMs became infected (mean peak viremia: 3.8 log10 PFU/mL, mean duration: 3.5 days). vRNA was detected in oral swabs collected from both of these infected AGMs, and infectious virus was detected in an oral swab from one of these AGMs. Notably, vRNA and infectious virus were detected in vaginal swabs collected from the infected female AGM (peak viral load: 7.5 log10 copies/mL, peak titer: 3.8 log10 PFU/mL, range of detection: 5-21 days post infection). Abnormal clinical chemistry and hematology results were detected and acute lymphadenopathy was observed in some AGMs. Infection dynamics in all three AGM ZIKV models are similar to those reported in the majority of human ZIKV infections. Our results indicate that the AGM can be used as a surrogate to model mosquito or sexual ZIKV transmission and infection. Furthermore, our results suggest that AGMs are likely involved in the enzootic maintenance and amplification cycle of ZIKV.


Subject(s)
Disease Models, Animal , Disease Transmission, Infectious , Sexually Transmitted Diseases, Viral/transmission , Vector Borne Diseases/transmission , Zika Virus Infection/transmission , Animals , Chlorocebus aethiops , Culicidae , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL