Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(26): e2221007120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339207

ABSTRACT

The objective of this study is to examine IL-11-induced mechanisms of inflammatory cell migration to the central nervous system (CNS). We report that IL-11 is produced at highest frequency by myeloid cells among the peripheral blood mononuclear cell (PBMC) subsets. Patients with relapsing-remitting multiple sclerosis (RRMS) have an increased frequency of IL-11+ monocytes, IL-11+ and IL-11R+ CD4+ lymphocytes, and IL-11R+ neutrophils in comparison to matched healthy controls. IL-11+ and granulocyte-macrophage colony-stimulating factor (GM-CSF)+ monocytes, CD4+ lymphocytes, and neutrophils accumulate in the cerebrospinal fluid (CSF). The effect of IL-11 in-vitro stimulation, examined using single-cell RNA sequencing, revealed the highest number of differentially expressed genes in classical monocytes, including up-regulated NFKB1, NLRP3, and IL1B. All CD4+ cell subsets had increased expression of S100A8/9 alarmin genes involved in NLRP3 inflammasome activation. In IL-11R+-sorted cells from the CSF, classical and intermediate monocytes significantly up-regulated the expression of multiple NLRP3 inflammasome-related genes, including complement, IL18, and migratory genes (VEGFA/B) in comparison to blood-derived cells. Therapeutic targeting of this pathway with αIL-11 mAb in mice with RR experimental autoimmune encephalomyelitis (EAE) decreased clinical scores, CNS inflammatory infiltrates, and demyelination. αIL-11 mAb treatment decreased the numbers of NFκBp65+, NLRP3+, and IL-1ß+ monocytes in the CNS of mice with EAE. The results suggest that IL-11/IL-11R signaling in monocytes represents a therapeutic target in RRMS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Leukocytes, Mononuclear/metabolism , Interleukin-11/genetics , Interleukin-11/metabolism , Central Nervous System/metabolism , Cell Movement
2.
Proc Natl Acad Sci U S A ; 119(14): e2111804119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35353625

ABSTRACT

The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti­CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti­CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti­CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow­derived immune cells were the major mediators of CSF-1R­dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R­dependent cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Macrophage Colony-Stimulating Factor , Multiple Sclerosis , Animals , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Picolinic Acids/pharmacology , Picolinic Acids/therapeutic use , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors
3.
Med Res Rev ; 44(4): 1923-1966, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38500405

ABSTRACT

Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Animals , Neurodegenerative Diseases/therapy , Blood-Brain Barrier/metabolism , Nervous System Diseases/therapy
4.
Nat Immunol ; 12(6): 568-75, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21516111

ABSTRACT

Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) require exposure to IL-23 to become encephalitogenic, but the mechanism by which IL-23 promotes their pathogenicity is not known. Here we found that IL-23 induced production of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in T(H)17 cells and that GM-CSF had an essential role in their encephalitogenicity. Our findings identify a chief mechanism that underlies the important role of IL-23 in autoimmune diseases. IL-23 induced a positive feedback loop whereby GM-CSF secreted by T(H)17 cells stimulated the production of IL-23 by antigen-presenting cells. Such cross-regulation of IL-23 and GM-CSF explains the similar pattern of resistance to autoimmunity when either of the two cytokines is absent and identifies T(H)17 cells as a crucial source of GM-CSF in autoimmune inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-1/pharmacology , Interleukin-23/pharmacology , Th17 Cells/drug effects , Animals , Antibodies/immunology , Antibodies/pharmacology , CD11c Antigen/immunology , CD11c Antigen/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Coculture Techniques , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Flow Cytometry , Glycoproteins , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interleukin-1beta/pharmacology , Interleukin-23/immunology , Interleukin-23/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Peptide Fragments , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transforming Growth Factor beta/pharmacology
5.
Proc Natl Acad Sci U S A ; 117(16): 9082-9093, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32253301

ABSTRACT

Current multiple sclerosis (MS) medications are mainly immunomodulatory, having little or no effect on neuroregeneration of damaged central nervous system (CNS) tissue; they are thus primarily effective at the acute stage of disease, but much less so at the chronic stage. An MS therapy that has both immunomodulatory and neuroregenerative effects would be highly beneficial. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that ursolic acid (UA), an antiinflammatory natural triterpenoid, also directly promotes oligodendrocyte maturation and CNS myelin repair. Oral treatment with UA significantly decreased disease severity and CNS inflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Importantly, remyelination and neural repair in the CNS were observed even after UA treatment was started on day 60 post immunization when EAE mice had full-blown demyelination and axonal damage. UA treatment also enhanced remyelination in a cuprizone-induced demyelination model in vivo and brain organotypic slice cultures ex vivo and promoted oligodendrocyte maturation in vitro, indicating a direct myelinating capacity. Mechanistically, UA induced promyelinating neurotrophic factor CNTF in astrocytes by peroxisome proliferator-activated receptor γ(PPARγ)/CREB signaling, as well as by up-regulation of myelin-related gene expression during oligodendrocyte maturation via PPARγ activation. Together, our findings demonstrate that UA has significant potential as an oral antiinflammatory and neural repair agent for MS, especially at the chronic-progressive stage.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunomodulation/drug effects , Multiple Sclerosis/drug therapy , Remyelination/drug effects , Triterpenes/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Differentiation/drug effects , Corpus Callosum/drug effects , Corpus Callosum/pathology , Cuprizone/toxicity , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin Sheath/drug effects , Myelin Sheath/pathology , Oligodendroglia/drug effects , Oligodendroglia/immunology , Oligodendroglia/pathology , PPAR gamma/metabolism , Triterpenes/therapeutic use , Ursolic Acid
6.
J Immunol ; 204(8): 2076-2087, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32169842

ABSTRACT

Dysregulated Th17 cell differentiation is associated with autoimmune diseases such as multiple sclerosis, which has no curative treatment. Understanding the molecular mechanisms of regulating Th17 cell differentiation will help find a novel therapeutic target for treating Th17 cell-mediated diseases. In this study, we investigated the cell-intrinsic processes by which RNA-binding protein HuR orchestrates Th17 cell fate decisions by posttranscriptionally regulating transcription factors Irf4 and Runx1 and receptor Il12rb1 expression, in turn promoting Th17 cell and Th1-like Th17 cell differentiation in C57BL/6J mice. Knockout of HuR altered the transcriptome of Th17 cells characterized by reducing the levels of RORγt, IRF4, RUNX1, and T-bet, thereby reducing the number of pathogenic IL-17+IFN-γ+CD4+ T cells in the spleen during experimental autoimmune encephalomyelitis. In keeping with the fact that HuR increased the abundance of adhesion molecule VLA-4 on Th17 cells, knockout of HuR impaired splenic Th17 cell migration to the CNS and abolished the disease. Accordingly, targeting HuR by its inhibitor DHTS inhibited splenic Th17 cell differentiation and reduced experimental autoimmune encephalomyelitis severity. In sum, we uncovered the molecular mechanism of HuR regulating Th17 cell functions, underscoring the therapeutic value of HuR for treatment of autoimmune neuroinflammation.


Subject(s)
Cell Differentiation , ELAV-Like Protein 1/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Th17 Cells/immunology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , ELAV-Like Protein 1/antagonists & inhibitors , ELAV-Like Protein 1/deficiency , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Furans , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phenanthrenes/pharmacology , Quinones , Th17 Cells/drug effects
7.
J Immunol ; 204(3): 531-539, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31852750

ABSTRACT

Multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) are inflammatory diseases of the CNS in which Th17 cells play a major role in the disease pathogenesis. Th17 cells that secrete GM-CSF are pathogenic and drive inflammation of the CNS. IL-9 is a cytokine with pleiotropic functions, and it has been suggested that it controls the pathogenic inflammation mediated by Th17 cells, and IL-9R-/- mice develop more severe EAE compared with wild-type counterparts. However, the underlying mechanism by which IL-9 suppresses EAE has not been clearly defined. In this study, we investigated how IL-9 modulates EAE development. By using mice knockout for IL-9R, we show that more severe EAE in IL-9R-/- mice correlates with increased numbers of GM-CSF+ CD4+ T cells and inflammatory dendritic cells (DCs) in the CNS. Furthermore, DCs from IL-9R-/- mice induced more GM-CSF production by T cells and exacerbated EAE upon adoptive transfer than did wild-type DCs. Our results suggest that IL-9 reduces autoimmune neuroinflammation by suppressing GM-CSF production by CD4+ T cells through the modulation of DCs.


Subject(s)
Central Nervous System/physiology , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-9/metabolism , Multiple Sclerosis/immunology , Th17 Cells/immunology , Adoptive Transfer , Animals , Autoimmunity , Cells, Cultured , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics
8.
Mol Biol Rep ; 49(2): 1103-1111, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34775574

ABSTRACT

BACKGROUND: The kynurenine pathway (KP) can be involved in the pathogenesis of neurodegenerative diseases and excessive neurotoxic metabolite production. This study aimed to evaluate the effects of overexpression of murine 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (Acmsd) gene in inflammatory conditions in RAW 264.7 cell line to present more information about the effect of this gene on inflammatory conditions and the KP cycle. METHODS AND RESULTS: The coding sequence of the Acmsd gene was cloned into pCMV6-AC-IRES-GFP expression vector with a green fluorescent protein (GFP) marker. To simulate inflammatory conditions, RAW 264.7 macrophage cells were stimulated by Lipopolysaccharide (LPS) 24 h before transfection, and transfected by Polyethyleneimine (PEI) with constructed plasmids expressing the Acmsd gene. The effect of Acmsd gene expression level on murine Interferon-gamma (Ifn-γ) and murine Indoleamine 2,3-dioxygenase 1 (Ido1) gene expression level was investigated by Real-Time PCR. According to the results of this study, good transfection efficiency was observed 72 h after transfection, and Acmsd expression level increased 29-fold (P < 0.001) in transfected LPS-stimulated cells compared to the control group (LPS-stimulated cells that were not transfected). Additionally, increased Acmsd expression level significantly down-regulated Ifn-γ (P < 0.001) and Ido1 (P < 0.01) expression level in transfected LPS-stimulated cells compared to LPS-stimulated cells. CONCLUSIONS: Acmsd gene overexpression in inflammatory conditions can reduce the expression levels of the Ido1 gene, and its regulator, Ifn-γ. Consequently, it may be considered as a novel regulatory factor in the KP balance.


Subject(s)
Carboxy-Lyases/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Interferon-gamma/genetics , Kynurenine/metabolism , Amino Acid Sequence , Animals , Carboxy-Lyases/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Kidney/metabolism , Liver/metabolism , Mice , RAW 264.7 Cells
9.
Immunology ; 163(2): 185-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33480040

ABSTRACT

Montelukast is a leukotriene receptor antagonist that is known to prevent allergic rhinitis and asthma. Blocking the Cysteinyl leukotriene receptor (CysLTR1), one of the primary receptors of leukotrienes, has been demonstrated to be efficacious in ameliorating experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through disrupting chemotaxis of infiltrating T cells. However, the role of CysLTR1 in the pathogenesis of MS is not well understood. Here, we show that MS patients had higher expression of CysLTR1 in the circulation and central nervous system (CNS). The majority of CD4+ T cells expressed CysLTR1 in MS lesions. Among T-cell subsets, Th17 cells had the highest expression of CysLTR1, and blocking CysLTR1 signalling abrogated their development in vitro. Inhibition of CysLTR1 by montelukast suppressed EAE development in both a prophylactic and therapeutic manner and inhibited myelin loss in EAE mice. Similarly, the in vivo results showed that montelukast inhibited Th17 response in EAE mice and that Th17 cells treated with montelukast had reduced encephalitogenic in adoptive EAE. Our findings strongly suggest that targeting Th17 response by inhibiting CysLTR1 signalling could be a promising therapeutic strategy for the treatment of MS and CNS inflammatory diseases.


Subject(s)
Acetates/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Cyclopropanes/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Inflammation/drug therapy , Leukotriene Antagonists/therapeutic use , Multiple Sclerosis/drug therapy , Quinolines/therapeutic use , Sulfides/therapeutic use , Th17 Cells/immunology , Adoptive Transfer , Animals , Cell Differentiation , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy , Receptors, Leukotriene/genetics , Receptors, Leukotriene/metabolism , Signal Transduction
10.
J Autoimmun ; 114: 102505, 2020 11.
Article in English | MEDLINE | ID: mdl-32595012

ABSTRACT

Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are neuroinflammatory conditions where inflammatory CD4+ T cells play a major role. Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells suppress inflammation and an increase in their numbers and activity is beneficial for MS and EAE. However, studies have shown that Treg cells can transdifferentiate to pathogenic Th17 cells under inflammatory conditions. Drugs that stimulate Treg cell induction and their resistance to inflammatory stimuli are necessary to develop effective therapies to treat MS. Here, we show that primaquine (PQ), an anti-malarial drug, suppresses EAE through the stimulation of Foxp3+ Treg cells. PQ-elicited Treg cells are refractory to inflammatory stimuli and suppress EAE. Additionally, PQ-elicited Foxp3+ Treg cells were more efficient in suppressing the proliferation of responder cells compared to PBS-elicited Treg cells. Although PQ does not directly induce Foxp3+ Treg cell differentiation from naïve T cells, it modulated dendritic cells (DCs) to induce Foxp3+ Treg cells in an indoleamine 2,3 dioxygenase (IDO)-dependent manner. Together, our results show that PQ elicits Foxp3+ Treg cells with a superior suppressive activity to reduce EAE. PQ has the potential as a safe and effective treatment for MS and other CNS autoimmune inflammatory diseases.


Subject(s)
Forkhead Transcription Factors/metabolism , Primaquine/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Antimalarials/pharmacology , Autoimmunity , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Lymphocyte Activation/immunology , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism
11.
Eur J Immunol ; 48(7): 1228-1234, 2018 07.
Article in English | MEDLINE | ID: mdl-29572810

ABSTRACT

MS and EAE are T cell-driven autoimmune diseases of the CNS where IL-17-producing Th17 cells promote damage and are pathogenic. Conversely, tolerogenic DCs induce Treg cells and suppress Th17 cells. Chloroquine (CQ) suppresses EAE through the modulation of DCs by unknown mechanisms. Here, we show that STAT 1 is necessary for CQ-induced tolerogenic DCs (tolDCs) to efficiently suppress EAE. We observed that CQ induces phosphorylation of STAT1 in DCs in vivo and in vitro. Genetic blockage of STAT1 abrogated the suppressive activity of CQ-treated DCs. Opposed to its WT counterparts, CQ-treated STAT1-/- BMDCs were unable to suppress Th17 cells and increased EAE severity. Our findings show that STAT1 is a major signaling pathway in CQ-induced tolDCs and may shed light on new therapeutic avenues for the induction of tolDCs in autoimmune diseases such as MS.


Subject(s)
Chloroquine/metabolism , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Neutrophils/immunology , STAT1 Transcription Factor/metabolism , Th17 Cells/immunology , Animals , Autoantigens/immunology , Cells, Cultured , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/immunology , STAT1 Transcription Factor/genetics , Signal Transduction
12.
Nat Immunol ; 8(12): 1372-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17994023

ABSTRACT

Excessive inflammation occurs during infection and autoimmunity in mice lacking the alpha-subunit of the interleukin 27 (IL-27) receptor. The molecular mechanisms underlying this increased inflammation are incompletely understood. Here we report that IL-27 upregulated IL-10 in effector T cells that produced interferon-gamma and expressed the transcription factor T-bet but did not express the transcription factor Foxp3. These IFN-gamma+T-bet+Foxp3- cells resembled effector T cells that have been identified as the main source of host-protective IL-10 during inflammation. IL-27-induced production of IL-10 was associated with less secretion of IL-17, and exogenous IL-27 reduced the severity of adoptively transferred experimental autoimmune encephalomyelitis by a mechanism dependent on IL-10. Our data show that IL-27-induced production of IL-10 by effector T cells contributes to the immunomodulatory function of IL-27.


Subject(s)
Autoimmunity/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-10/metabolism , Interleukin-17/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/metabolism , Animals , Autoimmunity/immunology , Central Nervous System Diseases/immunology , Central Nervous System Diseases/pathology , Inflammation/immunology , Interleukin-10/immunology , Interleukin-17/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , T-Lymphocytes/immunology
15.
Mol Ther ; 25(2): 401-415, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28153091

ABSTRACT

Inflammatory demyelination and axonal damage of the CNS are hallmarks of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Fingolimod (FTY720), the first FDA-approved oral medication for MS, suppresses acute disease but is less effective at the chronic stage, and whether it has a direct effect on neuroregeneration in MS and EAE remains unclear. Here we show that FTY720, at nanomolar concentrations, effectively protected survival of neural stem cells (NSCs) and enhanced their development into mature oligodendrocytes (OLGs) in vitro, primarily through the S1P3 and S1P5 receptors. In vivo, treatment with either FTY720 or NSCs alone had no effect on the secondary progressive stage of remitting-relapsing EAE, but a combination therapy with FTY720 and NSCs promoted significant recovery, including ameliorated clinical signs and CNS inflammatory demyelination, enhanced MBP synthesis and remyelination, inhibited axonal degeneration, and reduced astrogliosis. Moreover, FTY720 significantly improved incorporation and survival of transplanted NSCs in the CNS and drove their differentiation into more OLGs but fewer astrocytes, thus promoting remyelination and CNS repair processes in situ. Our data demonstrate a novel effect of FTY720 on NSC differentiation and remyelination, broadening its possible application to NSC-based therapy in the secondary progressive stage of MS.


Subject(s)
Cell Differentiation/drug effects , Fingolimod Hydrochloride/pharmacology , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Multiple Sclerosis , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Nerve Regeneration , Neural Stem Cells/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Stem Cell Transplantation , Treatment Outcome
16.
Proc Natl Acad Sci U S A ; 112(10): E1106-15, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25713380

ABSTRACT

Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤ 0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.


Subject(s)
MicroRNAs/genetics , Primates/genetics , Animals , Base Sequence , Gene Knockdown Techniques , Genome , Ribonuclease III/genetics , Sequence Alignment
17.
Eur J Immunol ; 46(10): 2454-2466, 2016 10.
Article in English | MEDLINE | ID: mdl-27338697

ABSTRACT

Intravenous (i.v.) injection of a soluble myelin antigen can induce tolerance, which effectively ameliorates experimental autoimmune encephalomyelitis (EAE). We have previously shown that i.v. myelin oligodendrocyte glycoprotein (MOG) induces tolerance in EAE and expands a subpopulation of tolerogenic CD11c+ CD11b+ dendritic cells (DCs) with an immature phenotype having low expression of IA and co-stimulatory molecules CD40, CD86, and CD80. Here, we further investigate the role of tolerogenic DCs in i.v. tolerance by injecting clodronate-loaded liposomes, which selectively deplete CD11c+ CD11b+ and immature DCs, but not CD11c+ CD8+ DCs and mature DCs. I.v. MOG-induced suppression of EAE was partially, yet significantly, blocked by CD11c+ CD11b+ DC depletion. While i.v. MOG inhibited IA, CD40, CD80, CD86 expression and induced TGF-ß, IL-27, IL-10 production in CD11c+ CD11b+ DCs, these effects were abrogated after injection of clodronate-loaded liposomes. Depletion of CD11c+ CD11b+ DCs also precluded i.v. autoantigen-induced T-cell tolerance, such as decreased production of IL-2, IFN-γ, IL-17 and numbers of IL-2+ , IFN-γ+ , and IL-17+ CD4+ T cells, as well as an increased proportion of CD4+ CD25+ Foxp3+ regulatory T cells and CD4+ IL-10+ Foxp3- Tr1 cells. CD11c+ CD11b+ DCs, through low expression of IA and costimulatory molecules as well as high expression of TGF-ß, IL-27, and IL-10, play an important role in i.v. tolerance-induced EAE suppression.


Subject(s)
Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Administration, Intravenous , Animals , CD11b Antigen/metabolism , CD11c Antigen/metabolism , Cell Differentiation , Cells, Cultured , Clodronic Acid/administration & dosage , Cytokines/metabolism , Dendritic Cells/pathology , Female , Forkhead Transcription Factors/metabolism , Immune Tolerance , Liposomes/administration & dosage , Lymphocyte Activation , Mice , Mice, Inbred C57BL
18.
Eur J Immunol ; 46(7): 1783-96, 2016 07.
Article in English | MEDLINE | ID: mdl-27151444

ABSTRACT

In experimental autoimmune encephalomyelitis (EAE), intravenous (i.v.) injection of the antigen, myelin oligodendrocyte glycoprotein-derived peptide, MOG35-55 , suppresses disease development, a phenomenon called i.v. tolerance. Galectin-1, an endogenous glycan-binding protein, is upregulated during autoimmune neuroinflammation and plays immunoregulatory roles by inducing tolerogenic dendritic cells (DCs) and IL-10 producing regulatory type 1 T (Tr1) cells. To examine the role of galectin-1 in i.v. tolerance, we administered MOG35-55 -i.v. to wild-type (WT) and galectin-1 deficient (Lgals1(-/-) ) mice with ongoing EAE. MOG35-55 suppressed disease in the WT, but not in the Lgals1(-/-) mice. The numbers of Tr1 cells and Treg cells were increased in the CNS and periphery of tolerized WT mice. In contrast, Lgals1(-/-) MOG-i.v. mice had reduced numbers of Tr1 cells and Treg cells in the CNS and periphery, and reduced IL-27, IL-10, and TGF-ß1 expression in DCs in the periphery. DCs derived from i.v.-tolerized WT mice suppressed disease when adoptively transferred into mice with ongoing EAE, whereas DCs from Lgals1(-/-) MOG-i.v. mice were not suppressive. These findings demonstrate that galectin-1 is required for i.v. tolerance induction, likely via induction of tolerogenic DCs leading to enhanced development of Tr1 cells, Treg cells, and downregulation of proinflammatory responses.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Galectin 1/genetics , Immune Tolerance/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Adoptive Transfer , Animals , Autoantigens/immunology , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Female , Immunophenotyping , Lymphocyte Count , Mice , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
19.
Exp Mol Pathol ; 102(3): 515-521, 2017 06.
Article in English | MEDLINE | ID: mdl-28552332

ABSTRACT

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has recently been found to have the anti-inflammatory potential to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis; however, its direct effect on neural cells is not clear. In the current study we show that 1,25(OH)2D3 treatment effectively suppressed clinical signs of ongoing EAE and reduced inflammation and demyelination scores in the central nervous system (CNS). The treatment significantly decreased production/expression of pro-inflammatory cytokines IFN-γ, GM-CSF and IL-17A, while it increased anti-inflammatory cytokines IL-4 and IL-10. Further, 1,25(OH)2D3 treatment effectively elevated the numbers of neural stem cells, oligodendrocyte precursor cells, as well as oligodendrocytes in disease lesions in the CNS. These results, together with its in vitro effect of inducing oligodendrocyte differentiation as shown in our previous findings, demonstrate that 1,25(OH)2D3 suppressed EAE not only by its immunomodulatory capacity, but also by its effect on oligodendrocyte differentiation and maturation, and thus has potential for remyelination and neural repair.


Subject(s)
Calcitriol/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Oligodendroglia/drug effects , Animals , Cells, Cultured , Central Nervous System/cytology , Central Nervous System/drug effects , Female , Immunomodulation , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Oligodendroglia/cytology
20.
J Immunol ; 194(11): 5085-93, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25917097

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the CNS. Studies in animal models of MS have shown that GM-CSF produced by T cells is necessary for the development of autoimmune CNS inflammation. This suggests that GM-CSF may have a pathogenic role in MS as well, and a clinical trial testing its blockade is ongoing. However, there have been few reports on GM-CSF production by T cells in MS. The objective of this study was to characterize GM-CSF production by T cells of MS patients and to determine the effect of IFN-ß therapy on its production. GM-CSF production by peripheral blood (PB) T cells and the effects of IFN-ß were characterized in samples of untreated and IFN-ß-treated MS patients versus healthy subjects. GM-CSF production by T cells in MS brain lesions was analyzed by immunofluorescence. Untreated MS patients had significantly greater numbers of GM-CSF(+)CD4(+) and CD8(+) T cells in PB compared with healthy controls and IFN-ß-treated MS patients. IFN-ß significantly suppressed GM-CSF production by T cells in vitro. A number of CD4(+) and CD8(+) T cells in MS brain lesions expressed GM-CSF. Elevated GM-CSF production by PB T cells in MS is indicative of aberrant hyperactivation of the immune system. Given its essential role in animal models, abundant GM-CSF production at the sites of CNS inflammation suggests that GM-CSF contributes to MS pathogenesis. Our findings also reveal a potential mechanism of IFN-ß therapy, namely suppression of GM-CSF production.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Interferon-beta/therapeutic use , Multiple Sclerosis/drug therapy , Adult , Brain/cytology , Brain/immunology , Brain/pathology , Female , Humans , Inflammation/immunology , Interferon-gamma/biosynthesis , Lymphocyte Activation/immunology , Male , Middle Aged , Multiple Sclerosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL