Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Publication year range
1.
J Med Virol ; 96(1): e29354, 2024 01.
Article in English | MEDLINE | ID: mdl-38180134

ABSTRACT

The Mpox virus can cause severe disease in the susceptible population with dermatologic and systemic manifestations. Furthermore, ophthalmic manifestations of mpox infection are well documented. Topical trifluridine (TFT) eye drops have been used for therapy of ophthalmic mpox infection in patients, however, its efficacy against mpox virus infection in this scenario has not been previously shown. In the present study, we have established ophthalmic cell models suitable for the infection with mpox virus. We show, that TFT is effective against a broad range of mpox isolates in conjunctival epithelial cells and keratocytes. Further, TFT remained effective against a tecovirimat-resistant virus strain. In the context of drug combinations, a nearly additive effect was observed for TFT combinations with brincidofovir and tecovirimat in conjunctival epithelial cells, while a slight antagonism was observed for both combinations in keratocytes. Altogether, our findings demonstrate TFT as a promising drug for treatment of ophthalmic mpox infection able to overcome tecovirimat resistance. However, conflicting results regarding the effect of drug combinations with approved compounds warrant close monitoring of such use in patients.


Subject(s)
Mpox (monkeypox) , Trifluridine , Humans , Trifluridine/pharmacology , Trifluridine/therapeutic use , Eye , Drug Combinations , Benzamides , Isoindoles , Monkeypox virus
2.
Br J Cancer ; 129(10): 1667-1678, 2023 11.
Article in English | MEDLINE | ID: mdl-37723317

ABSTRACT

BACKGROUND: Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS: We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS: In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS: These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Child , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins/metabolism , Cisplatin/pharmacology , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Neuroblastoma/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis
3.
BMC Cancer ; 22(1): 1352, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36564761

ABSTRACT

BACKGROUND/INTRODUCTION: Penile cancer is a rare disease in demand for new therapeutic options. Frequently used combination chemotherapy with 5 fluorouracil (5-FU) and cisplatin (CDDP) in patients with metastatic penile cancer mostly results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance against standard therapy could help to understand molecular mechanisms underlying chemotherapy resistance and to identify candidate treatments for an efficient second line therapy. METHODS: We generated a cell line from a humanpapilloma virus (HPV) negative penile squamous cell carcinoma (UKF-PEC-1). This cell line was subject to chronic exposure to chemotherapy with CDDP and / or 5-FU to induce acquired resistance in the newly established chemo-resistant sublines (PEC-1rCDDP2500, adapted to 2500 ng/ml CDDP; UKF-PEC-1r5-FU500, adapted to 500 ng/ml 5- FU; UKF-PEC1rCDDP2500/r5-FU500, adapted to 2500 ng/ml CDDP and 500 ng/ml 5 -FU). Afterwards cell line pellets were formalin-fixed, paraffin embedded and subject to sequencing as well as testing for homologous recombination deficiency (HRD). Additionally, exemplary immunohistochemical stainings for p53 and gammaH2AX were applied for verification purposes. Finally, UKF-PEC-1rCDDP2500, UKF-PEC-1r5-FU500, UKF-PEC1rCDDP2500/r5-FU500, and UKF-PEC-3 (an alternative penis cancer cell line) were tested for sensitivity to paclitaxel, docetaxel, olaparib, and rucaparib. RESULTS AND CONCLUSIONS: The chemo-resistant sublines differed in their mutational landscapes. UKF-PEC-1rCDDP2500 was characterized by an increased HRD score, which is supposed to be associated with increased PARP inhibitor and immune checkpoint inhibitor sensitivity in cancer. However, UKF-PEC-1rCDDP2500 did not display sensitivity to PARP inhibitors.


Subject(s)
Cisplatin , Penile Neoplasms , Humans , Male , Cisplatin/pharmacology , Cisplatin/therapeutic use , Penile Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology
4.
Curr Issues Mol Biol ; 43(3): 1212-1225, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34698067

ABSTRACT

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.


Subject(s)
Antigens, Differentiation/metabolism , CD47 Antigen/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Pandemics , Receptors, Immunologic/metabolism , SARS-CoV-2/metabolism , Severity of Illness Index , Signal Transduction/immunology , Blood Donors , Blotting, Western/methods , Bronchi/cytology , COVID-19/pathology , COVID-19/virology , Caco-2 Cells , Epithelial Cells/metabolism , Epithelial Cells/virology , Healthy Volunteers , Humans , Monocytes/metabolism , Monocytes/virology , Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
5.
Forensic Sci Med Pathol ; 16(4): 641-648, 2020 12.
Article in English | MEDLINE | ID: mdl-32915388

ABSTRACT

Determination of a minimal postmortem interval via age estimation of necrophagous diptera has been restricted to the juvenile stages and the time until emergence of the adult fly, i.e. up until 2-6 weeks depending on species and temperature. Age estimation of adult flies could extend this period by adding the age of the fly to the time needed for complete development. In this context pteridines are promising metabolites, as they accumulate in the eyes of flies with increasing age. We studied adults of the blow fly Lucilia sericata at constant temperatures of 16 °C and 25 °C up to an age of 25 days and estimated their pteridine levels by fluorescence spectroscopy. Age was given in accumulated degree days (ADD) across temperatures. Additionally, a mock case was set up to test the applicability of the method. Pteridine increases logarithmically with increasing ADD, but after 70-80 ADD the increase slows down and the curve approaches a maximum. Sex had a significant impact (p < 4.09 × 10-6) on pteridine fluorescence level, while body-size and head-width did not. The mock case demonstrated that a slight overestimation of the real age (in ADD) only occurred in two out of 30 samples. Age determination of L. sericata on the basis of pteridine levels seems to be limited to an age of about 70 ADD, but depending on the ambient temperature this could cover an extra amount of time of about 5-7 days after completion of the metamorphosis.


Subject(s)
Aging , Calliphoridae/growth & development , Eye/metabolism , Pteridines/metabolism , Spectrometry, Fluorescence , Animals , Forensic Entomology/methods , Sex Factors
6.
Int J Mol Sci ; 19(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518977

ABSTRACT

The major obstacle in the clinical use of the antitumor drug cisplatin is inherent and acquired resistance. Typically, cisplatin resistance is not restricted to a single mechanism demanding for a systems pharmacology approach to understand a whole cell's reaction to the drug. In this study, the cellular transcriptome of untreated and cisplatin-treated A549 non-small cell lung cancer cells and their cisplatin-resistant sub-line A549rCDDP2000 was screened with a whole genome array for relevant gene candidates. By combining statistical methods with available gene annotations and without a previously defined hypothesis HRas, MAPK14 (p38), CCL2, DOK1 and PTK2B were identified as genes possibly relevant for cisplatin resistance. These and related genes were further validated on transcriptome (qRT-PCR) and proteome (Western blot) level to select candidates contributing to resistance. HRas, p38, CCL2, DOK1, PTK2B and JNK3 were integrated into a model of resistance-associated signalling alterations describing differential gene and protein expression between cisplatin-sensitive and -resistant cells in reaction to cisplatin exposure.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Pharmacogenetics/methods , Systems Biology/methods , Biomarkers , Cell Line, Tumor , Computational Biology/methods , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Ontology , Genomics/methods , Humans , Signal Transduction , Workflow
7.
J Pharm Pharm Sci ; 17(1): 92-105, 2014.
Article in English | MEDLINE | ID: mdl-24735762

ABSTRACT

PURPOSE: The prominent ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and ABCG2 are involved in substance transport across physiological barriers and therefore in drug absorption, distribution, and elimination. They also mediate multi-drug resistance in cancer cells. Different flavonoids are known to interfere with different ABC transporters. Here, the effect of the furanoflavonol karanjin, a potential drug with antiglycaemic, gastroprotective, antifungal, and antibacterial effects, was investigated on ABCB1, ABCC1, and ABCG2-mediated drug transport in comparison to the flavonoids apigenin, genistein, and naringenin. METHODS: Cells expressing the relevant transporters (ABCB1: UKF-NB-3(ABCB1), UKF-NB-3(r)VCR¹°; ABCC1: G62, PC-3(r)VCR²°; ABCG2: UKF-NB-3(ABCG2)) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities. RESULTS: Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1 µM. CONCLUSIONS: Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Benzopyrans/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Adenosine Triphosphatases/metabolism , Apigenin/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Flavanones/pharmacology , Genistein/pharmacology , Humans
8.
J Pharm Pharm Sci ; 17(1): 154-68, 2014.
Article in English | MEDLINE | ID: mdl-24735766

ABSTRACT

PURPOSE: The clinically approved oncogenic BRAF inhibitor PLX4032 (vemurafenib) was shown to be a substrate of the ATP-binding cassette (ABC) transporter ABCB1. Here, we compared PLX4032 and its structurally closely related precursor compound PLX4720 for their interference with ABCB1 and the ABCB1-mediated compound transport using docking and cell culture experiments. METHODS: For the docking study of PLX4032 and PLX4720 with ABCB1, we analysed binding of both compounds to mouse Abcb1a and to human ABCB1 using a homology model of human ABCB1 based on the 3D structure of Abcb1a. Naturally ABCB1 expressing cells including V600E BRAF-mutated and BRAF wild-type melanoma cells and cells transduced with a lentiviral vector encoding for ABCB1 were used as cell culture models. ABCB1 expression and function were studied by the use of fluorescent and cytotoxic ABCB1 substrates in combination with ABCB1 inhibitors. RESULTS: Docking experiments predicted PLX4032 to interact stronger with ABCB1 than PLX4720. Experimental studies using different cellular models and structurally different ABCB1 substrates confirmed that PLX4032 interfered stronger with ABCB1 function than PLX4720. For example, PLX4032 (20 µM) induced a 4-fold enhanced rhodamine 123 accumulation compared to PLX4720 (20 µM) in ABCB1-transduced UKF-NB-3 cells and reduced the IC50 for the cytotoxic ABCB1 substrate vincristine in this model by 21-fold in contrast to a 9-fold decrease induced by PLX4720. CONCLUSIONS: PLX4032 exerted stronger effects on ABCB1-mediated drug transport than PLX4720. This indicates that small changes in a molecule can substantially modify its interaction with ABCB1, a promiscuous transporter that transports structurally different compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Sulfonamides/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adenosine Triphosphatases/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Therapy, Combination , Flow Cytometry , Humans , Indoles/administration & dosage , Melanoma/drug therapy , Mice , Molecular Docking Simulation , Sulfonamides/administration & dosage , Vemurafenib , Vincristine/administration & dosage , Vincristine/therapeutic use
9.
Am J Pathol ; 180(4): 1370-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22285670

ABSTRACT

The influences of cytotoxic drugs on endothelial cells remain incompletely understood. Herein, we examined the effects of chemotherapeutic agents in experimental angiogenesis models and analyzed vessel densities in clinical neuroblastoma tumor samples. Cisplatin (20 to 500 ng/mL), doxorubicin (4 to 100 ng/mL), and vincristine (0.5 to 4 ng/mL), drugs commonly involved in neuroblastoma therapy protocols, induced pro-angiogenic effects in different angiogenesis models. They enhanced endothelial cell tube formation, endothelial cell sprouting from spheroids, formation of tip cells in the sprouting assay, expression of αvß3 integrin, and vitronectin binding. All three drugs increased global cellular kinase phosphorylation levels, including the angiogenesis-relevant molecules protein kinase Cß and Akt. Pharmacological inhibition of protein kinase Cß or Akt upstream of phosphatidylinositol 3-kinase reduced chemotherapy-induced endothelial cell tube formation. Moreover, the investigated chemotherapeutics dose dependently induced vessel formation in the chick chorioallantoic membrane assay. Tumor samples from seven high-risk patients with neuroblastoma were analyzed for vessel density by IHC. Results revealed that neuroblastoma samples taken after chemotherapy consistently showed an enhanced microvessel density compared with the corresponding samples taken before chemotherapy. In conclusion, our data show that chemotherapy can activate endothelial cells by inducing multiple pro-angiogenic signaling pathways and exert pro-angiogenic effects in vitro and in vivo. Moreover, we report a previously unrecognized clinical phenomenon that might, in part, be explained by our experimental observations: chemotherapy-associated enhanced vessel formation in tumors from patients with neuroblastoma.


Subject(s)
Antineoplastic Agents/adverse effects , Neovascularization, Pathologic/chemically induced , Neuroblastoma/blood supply , Animals , Antineoplastic Agents/pharmacology , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Cisplatin/adverse effects , Cisplatin/pharmacology , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Endothelial Cells/drug effects , Humans , Neovascularization, Pathologic/pathology , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Signal Transduction/drug effects , Tumor Cells, Cultured , Vincristine/adverse effects , Vincristine/pharmacology
10.
iScience ; 26(2): 105944, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36644320

ABSTRACT

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.

12.
Cancers (Basel) ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35804883

ABSTRACT

Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells remains questionable. An in vitro study was performed to investigate the influence of amygdalin (10 mg/mL) on the growth of a panel of therapy-naïve and docetaxel- or cabazitaxel-resistant PCa cell lines (PC3, DU145, and LNCaP cells). Tumor growth, proliferation, clonal growth, and cell cycle progression were investigated. The cell cycle regulating proteins (phospho)cdk1, (phospho)cdk2, cyclin A, cyclin B, p21, and p27 and the mammalian target of rapamycin (mTOR) pathway proteins (phospho)Akt, (phospho)Raptor, and (phospho)Rictor as well as integrin ß1 and the cytoskeletal proteins vimentin, ezrin, talin, and cytokeratin 8/18 were assessed. Furthermore, chemotactic activity and adhesion to extracellular matrix components were analyzed. Amygdalin dose-dependently inhibited tumor growth and reduced tumor clones in all (parental and resistant) PCa cell lines, accompanied by a G0/G1 phase accumulation. Cell cycle regulating proteins were significantly altered by amygdalin. A moderate influence of amygdalin on tumor cell adhesion and chemotaxis was observed as well, paralleled by modifications of cytoskeletal proteins and the integrin ß1 expression level. Amygdalin may, therefore, block tumor growth and disseminative characteristics of taxane-resistant PCa cells. Further studies are warranted to determine amygdalin's value as an antitumor drug.

13.
Cancers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406455

ABSTRACT

Whereas the lack of biomarkers in penile cancer (PeCa) impedes the development of efficacious treatment protocols, preliminary evidence suggests that c-MET and associated signaling elements may be dysregulated in this disorder. In the following study, we investigated whether c-MET and associated key molecular elements may have prognostic and therapeutic utility in PeCa. Formalin-fixed, paraffin-embedded tumor tissue from therapy-naïve patients with invasive PeCa was used for tissue microarray (TMA) analysis. Immunohistochemical staining was performed to determine the expression of the proteins c-MET, PPARg, ß-catenin, snail, survivin, and n-MYC. In total, 94 PeCa patients with available tumor tissue were included. The median age was 64.9 years. High-grade tumors were present in 23.4%, and high-risk HPV was detected in 25.5%. The median follow-up was 32.5 months. High expression of snail was associated with HPV-positive tumors. Expression of ß-catenin was inversely associated with grading. In both univariate COX regression analysis and the log-rank test, an increased expression of PPARg and c-MET was predictive of inferior disease-specific survival (DSS). Moreover, in multivariate analysis, a higher expression of c-MET was independently associated with worse DSS. Blocking c-MET with cabozantinib and tivantinib induced a significant decrease in viability in the primary PeCa cell line UKF-PeC3 isolated from the tumor tissue as well as in cisplatin- and osimertinib-resistant sublines. Strikingly, a higher sensitivity to tivantinib could be detected in the latter, pointing to the promising option of utilizing this agent in the second-line treatment setting.

14.
Cancers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066040

ABSTRACT

The PI3K/mTOR/AKT pathway might represent an intriguing option for treatment of penile cancer (PeCa). We aimed to assess whether members of this pathway might serve as biomarkers and targets for systemic therapy. Tissue of primary cancer from treatment-naïve PeCa patients was used for tissue microarray analysis. Immunohistochemical staining was performed with antibodies against AKT, pAKT, mTOR, pmTOR, pS6, pPRAS, p4EBP1, S6K1 and pp70S6K. Protein expression was correlated with clinicopathological characteristics as well as overall survival (OS), disease-specific survival (DSS), recurrence-free survival (RFS) and metastasis-free survival (MFS). AKT inhibition was tested in two primarily established, treatment-naïve PeCa cell lines by treatment with capivasertib and analysis of cell viability and chemotaxis. A total of 76 patients surgically treated for invasive PeCa were included. Higher expression of AKT was significantly more prevalent in high-grade tumors and predictive of DSS and OS in the Kaplan-Meier analysis, and an independent predictor of worse OS and DSS in the multivariate regression analysis. Treatment with pan-AKT inhibitor capivasertib in PeCa cell lines induced a significant downregulation of both total AKT and pAKT as well as decreased cell viability and chemotaxis. Selected protein candidates of the mTOR/AKT signaling pathway demonstrate association with histological and survival parameters of PeCa patients, whereas AKT appears to be the most promising one.

15.
J Exp Clin Cancer Res ; 40(1): 317, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34641952

ABSTRACT

BACKGROUND: SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1. METHODS: CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation. RESULTS: Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance. CONCLUSION: Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Nucleosides/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans
16.
Oncol Rep ; 43(4): 1331-1337, 2020 04.
Article in English | MEDLINE | ID: mdl-32020226

ABSTRACT

Patients with urothelial carcinoma frequently fail to respond to first­line chemotherapy using cisplatin and gemcitabine due to development of resistant tumor cells. The aim of the present study was to investigate whether an alternative treatment with tumor necrosis factor­related apoptosis­inducing ligand (TRAIL) that induces tumor cell death via the extrinsic apoptotic pathway may be effective against chemotherapy­resistant urothelial cancer cell lines. The viability of the urothelial cancer cell line RT112 and its chemotherapy­adapted sublines was investigated by MTT assay. The expression of anti­apoptotic proteins was determined by western blotting and the individual roles of cellular inhibitor of apoptosis protein (cIAP)1, cIAP2, x­linked inhibitor of apoptosis protein (XIAP) and induced myeloid leukemia cell differentiation protein (Mcl­1) were investigated by siRNA­mediated depletion. In particular, the bladder cancer sublines that were resistant to gemcitabine and cisplatin were cross­resistant to TRAIL. Resistant cells displayed upregulation of anti­apoptotic molecules compared with the parental cell line. Treatment with the second mitochondrial activator of caspases (SMAC) mimetic LCL­161 that antagonizes cIAP1, cIAP2 and XIAP resensitized chemoresistant cells to TRAIL. The resensitization of tumor cells to TRAIL was confirmed by depletion of antiapoptotic proteins with siRNA. Collectively, the findings of the present study demonstrated that SMAC mimetic LCL­161 increased the sensitivity of the parental cell line RT112 and chemotherapy­resistant sublines to TRAIL, suggesting that inhibiting anti­apoptotic molecules renders TRAIL therapy highly effective for chemotherapy­sensitive and ­resistant urothelial cancer cells.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/genetics , Inhibitor of Apoptosis Proteins/genetics , TNF-Related Apoptosis-Inducing Ligand/genetics , Urinary Bladder Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/genetics , Apoptosis/drug effects , Baculoviral IAP Repeat-Containing 3 Protein/antagonists & inhibitors , Caspase 3/drug effects , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Cisplatin/adverse effects , Cisplatin/pharmacology , Deoxycytidine/adverse effects , Deoxycytidine/analogs & derivatives , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/antagonists & inhibitors , Thiazoles/pharmacology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urothelium/drug effects , Urothelium/metabolism , Urothelium/pathology , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Gemcitabine
17.
Cancers (Basel) ; 12(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131402

ABSTRACT

The survivin suppressant YM155 is a drug candidate for neuroblastoma. Here, we tested YM155 in 101 neuroblastoma cell lines (19 parental cell lines, 82 drug-adapted sublines). Seventy seven (77) cell lines displayed YM155 IC50s in the range of clinical YM155 concentrations. ABCB1 was an important determinant of YM155 resistance. The activity of the ABCB1 inhibitor zosuquidar ranged from being similar to that of the structurally different ABCB1 inhibitor verapamil to being 65-fold higher. ABCB1 sequence variations may be responsible for this, suggesting that the design of variant-specific ABCB1 inhibitors may be possible. Further, we showed that ABCC1 confers YM155 resistance. Previously, p53 depletion had resulted in decreased YM155 sensitivity. However, TP53-mutant cells were not generally less sensitive to YM155 than TP53 wild-type cells in this study. Finally, YM155 cross-resistance profiles differed between cells adapted to drugs as similar as cisplatin and carboplatin. In conclusion, the large cell line panel was necessary to reveal an unanticipated complexity of the YM155 response in neuroblastoma cell lines with acquired drug resistance. Novel findings include that ABCC1 mediates YM155 resistance and that YM155 cross-resistance profiles differ between cell lines adapted to drugs as similar as cisplatin and carboplatin.

18.
Cancers (Basel) ; 12(5)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357518

ABSTRACT

Survivin is a drug target and its suppressant YM155 a drug candidate mainly investigated for high-risk neuroblastoma. Findings from one YM155-adapted subline of the neuroblastoma cell line UKF-NB-3 had suggested that increased ABCB1 (mediates YM155 efflux) levels, decreased SLC35F2 (mediates YM155 uptake) levels, decreased survivin levels, and TP53 mutations indicate YM155 resistance. Here, the investigation of 10 additional YM155-adapted UKF-NB-3 sublines only confirmed the roles of ABCB1 and SLC35F2. However, cellular ABCB1 and SLC35F2 levels did not indicate YM155 sensitivity in YM155-naïve cells, as indicated by drug response data derived from the Cancer Therapeutics Response Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer (GDSC) databases. Moreover, the resistant sublines were characterized by a remarkable heterogeneity. Only seven sublines developed on-target resistance as indicated by resistance to RNAi-mediated survivin depletion. The sublines also varied in their response to other anti-cancer drugs. In conclusion, cancer cell populations of limited intrinsic heterogeneity can develop various resistance phenotypes in response to treatment. Therefore, individualized therapies will require monitoring of cancer cell evolution in response to treatment. Moreover, biomarkers can indicate resistance formation in the acquired resistance setting, even when they are not predictive in the intrinsic resistance setting.

19.
Commun Biol ; 3(1): 324, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581304

ABSTRACT

The nucleoside analogue nelarabine, the prodrug of arabinosylguanine (AraG), is effective against T-cell acute lymphoblastic leukaemia (T-ALL) but not against B-cell ALL (B-ALL). The underlying mechanisms have remained elusive. Here, data from pharmacogenomics studies and a panel of ALL cell lines reveal an inverse correlation between nelarabine sensitivity and the expression of SAMHD1, which can hydrolyse and inactivate triphosphorylated nucleoside analogues. Lower SAMHD1 abundance is detected in T-ALL than in B-ALL in cell lines and patient-derived leukaemic blasts. Mechanistically, T-ALL cells display increased SAMHD1 promoter methylation without increased global DNA methylation. SAMHD1 depletion sensitises B-ALL cells to AraG, while ectopic SAMHD1 expression in SAMHD1-null T-ALL cells induces AraG resistance. SAMHD1 has a larger impact on nelarabine/AraG than on cytarabine in ALL cells. Opposite effects are observed in acute myeloid leukaemia cells, indicating entity-specific differences. In conclusion, SAMHD1 promoter methylation and, in turn, SAMHD1 expression levels determine ALL cell response to nelarabine.


Subject(s)
Arabinonucleosides/pharmacology , Drug Resistance, Neoplasm/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , SAM Domain and HD Domain-Containing Protein 1/genetics , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic , SAM Domain and HD Domain-Containing Protein 1/metabolism
20.
Clin Cancer Res ; 14(20): 6531-7, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18927293

ABSTRACT

PURPOSE: Neuroblastomas frequently show expression of the epidermal growth factor receptor (EGFR) and may therefore be susceptible to EGFR-targeted therapies. Here, EGFR expression and functionality was investigated in parental chemosensitive neuroblastoma cell lines (UKF-NB-3, IMR-32, NLF, SH-SY5Y) and their cisplatin-resistant sublines (UKF-NB-3(r)CDDP(1000), IMR-32(r)CDDP(1000), NLF(r)CDDP(1000), and SH-SY5Y(r)CDDP(500)). Moreover, the EGFR antibody cetuximab, the EGFR tyrosine kinase inhibitor Tyrphostin B46, and recombinant EGFR-targeted toxins were investigated for their influence on the viability and growth of neuroblastoma cells. EXPERIMENTAL DESIGN: EGFR expression and function was measured by flow cytometry or Western blot. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was examined by immunostaining for active caspase-3 or cleaved poly(ADP-ribose) polymerase. Cellular binding of FITC-labeled immunotoxins was studied by flow cytometry, and cellular uptake was studied by confocal laser scanning microscopy. RESULTS: The EGFR-targeted antibody and growth factor toxins scFv(14E1)- Pseudomonas exotoxin A (ETA) and TGF-alpha-ETA exerted anti-cancer effects in neuroblastoma cell lines that were insensitive to cetuximab or EGFR tyrosine kinase inhibitors. Furthermore, adaptation of chemosensitive neuroblastoma cells to cisplatin increased EGFR expression and sensitivity to both recombinant toxins. Treatment of chemosensitive neuroblastoma cells with cisplatin reversibly increased EGFR expression, whereas cisplatin-resistant cells showed enhanced EGFR expression independent of the presence of cisplatin. Combination treatment with scFv(14E1)-ETA or TGF-alpha-ETA and cisplatin exerted significantly improved anticancer effects compared with either single treatment in parental neuroblastoma cells, cisplatin-resistant sublines, and primary cultures. CONCLUSIONS: EGFR-targeted cytotoxic reagents such as scFv(14E1)-ETA and TGF-alpha-ETA represent promising candidates for further development as antineuroblastoma agents, especially in combination with cisplatin.


Subject(s)
ADP Ribose Transferases/therapeutic use , Antineoplastic Agents/pharmacology , Bacterial Toxins/therapeutic use , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Exotoxins/therapeutic use , Neuroblastoma/drug therapy , Virulence Factors/therapeutic use , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Apoptosis/drug effects , Blotting, Western , Caspase 3/metabolism , Cell Survival/drug effects , Cetuximab , ErbB Receptors/genetics , ErbB Receptors/metabolism , Flow Cytometry , Humans , Neuroblastoma/metabolism , Neuroblastoma/pathology , Poly(ADP-ribose) Polymerases/metabolism , Protein Kinase Inhibitors/adverse effects , Recombinant Fusion Proteins/therapeutic use , Transforming Growth Factor alpha/administration & dosage , Transforming Growth Factor alpha/genetics , Tumor Cells, Cultured , Tyrphostins/adverse effects , Pseudomonas aeruginosa Exotoxin A
SELECTION OF CITATIONS
SEARCH DETAIL