Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Publication year range
1.
Small ; : e2401472, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863131

ABSTRACT

The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.

2.
Biol Cell ; 114(3): 91-103, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34964145

ABSTRACT

BACKGROUND INFORMATION: Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the gene encoding dystrophin. It leads to repeated cycles of muscle fiber necrosis and regeneration and progressive replacement of fibers by fibrotic and adipose tissue, with consequent muscle weakness and premature death. Fibrosis and, in particular, collagen accumulation are important pathological features of dystrophic muscle. A better understanding of the development of fibrosis is crucial to enable better management of DMD. Three-dimensional (3D) characterization of collagen organization by second harmonic generation (SHG) microscopy has already proven a highly informative means of studying the fibrotic network in tissue. RESULTS: Here, we combine for the first-time tissue clearing with SHG microscopy to characterize in depth the 3D cardiac fibrosis network from DMDmdx rat model. Heart sections (1-mm-thick) from 1-year-old wild-type (WT) and DMDmdx rats were cleared using the CUBIC protocol. SHG microscopy revealed significantly greater collagen deposition in DMDmdx versus WT sections. Analyses revealed a specific pattern of SHG+ segmented objects in DMDmdx cardiac muscle, characterized by a less elongated shape and increased density. Compared with the observed alignment of SHG+ collagen fibers in WT rats, profound fiber disorganization was observed in DMDmdx rats, in which we observed two distinct SHG+ collagen fiber profiles, which may reflect two distinct stages of the fibrotic process in DMD. CONCLUSION AND SIGNIFICANCE: The current work highlights the interest to combine multiphoton SHG microscopy and tissue clearing for 3D fibrosis network characterization in label free organ. It could be a relevant tool to characterize the fibrotic tissue remodeling in relation to the disease progression and/or to evaluate the efficacy of therapeutic strategies in preclinical studies in DMD model or others fibrosis-related cardiomyopathies diseases.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Disease Models, Animal , Extracellular Matrix , Fibrosis , Mice , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Rats
3.
Vet Res ; 52(1): 72, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011392

ABSTRACT

Typical two-dimensional (2D) culture models of skeletal muscle-derived cells cannot fully recapitulate the organization and function of living muscle tissues, restricting their usefulness in in-depth physiological studies. The development of functional 3D culture models offers a major opportunity to mimic the living tissues and to model muscle diseases. In this respect, this new type of in vitro model significantly increases our understanding of the involvement of the different cell types present in the formation of skeletal muscle and their interactions, as well as the modalities of response of a pathological muscle to new therapies. This second point could lead to the identification of effective treatments. Here, we report the significant progresses that have been made the last years to engineer muscle tissue-like structures, providing useful tools to investigate the behavior of resident cells. Specifically, we interest in the development of myopshere- and myobundle-based systems as well as the bioprinting constructs. The electrical/mechanical stimulation protocols and the co-culture systems developed to improve tissue maturation process and functionalities are presented. The formation of these biomimetic engineered muscle tissues represents a new platform to study skeletal muscle function and spatial organization in large number of physiological and pathological contexts.


Subject(s)
Bioprinting/veterinary , Muscle, Skeletal/physiology , Tissue Engineering/veterinary , Animals , Bioprinting/methods , Tissue Engineering/methods
4.
Cytotherapy ; 21(7): 738-754, 2019 07.
Article in English | MEDLINE | ID: mdl-31133491

ABSTRACT

BACKGROUND: Human platelet lysate (hPL) represents a powerful alternative to fetal bovine serum (FBS) for human mesenchymal stromal cell (hMSC) expansion. However, the large variability in hPL sources and production protocols gives rise to discrepancies in product quality, characterization and poor batch-to-batch standardization. METHODS: hPL prepared with more than 200 donors (200+DhPL) or with five donors (5DhPL) were compared in terms of growth factor (GF) contents and biochemical analysis. A multiple protein assay and proteomic analysis were performed to further characterize 200+DhPL batches. We also compared the phenotypic and functional characteristics of bone marrow (BM)-hMSCs grown in 200+DhPL versus FBS+basic fibroblast growth factor (bFGF). RESULTS: By contrast to 5DhPL, industrial 200+DhPL displayed a strong standardization of GF contents and biochemical characteristics. We identified specific plasmatic components and platelet-released factors as the most relevant markers for the evaluation of the standardization of hPL batches. We used a multiplex assay and proteomic analysis of 200+DhPL to establish a proteomic signature and demonstrated the robust standardization of batches. 200+DhPL was shown to improve and standardize BM-hMSC expansion compared with FBS+bFGF. The levels of expression of BM-hMSC membrane markers were found to be much more homogeneous between batches when cells were cultured in 200+DhPL. BM-hMSCs cultured in parallel under both conditions displayed similar adipogenic and osteogenic differentiation potential and immunosuppressive properties. CONCLUSIONS: We report a standardization of hPL and the importance of such standardization for the efficient amplification of more homogeneous and reproducible cell therapy products.


Subject(s)
Blood Platelets/cytology , Bone Marrow Cells/cytology , Cell Culture Techniques/standards , Mesenchymal Stem Cells/cytology , Adipogenesis , Biomarkers/analysis , Blood Platelets/chemistry , Cell Culture Techniques/methods , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy/standards , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/physiology , Osteogenesis , Proteomics
5.
Mol Ther ; 26(2): 618-633, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29221805

ABSTRACT

After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells. Cultured human MuStem (hMuStem) cells do not express hematopoietic, endothelial, or myo-endothelial cell markers and reproducibly correspond to a population of early myogenic-committed progenitors with a perivascular/mesenchymal phenotypic signature, revealing a blood vessel wall origin. Importantly, they exhibit both myogenesis in vitro and skeletal muscle regeneration after intramuscular delivery into immunodeficient host mice. Together, our findings provide new insights supporting the notion that hMuStem cells could represent an interesting therapeutic candidate for dystrophic patients.


Subject(s)
Muscle, Skeletal/physiology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/transplantation , Regeneration , Stem Cell Transplantation , Adult Stem Cells , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mice , Muscle Development , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/therapy , Regenerative Medicine
6.
BMC Musculoskelet Disord ; 18(1): 153, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28403854

ABSTRACT

BACKGROUND: Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model. METHODS: Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach. RESULTS: Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation. CONCLUSIONS: Gait analysis using LDA allows for improved analysis of accelerometry data by applying a decision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs.


Subject(s)
Accelerometry/statistics & numerical data , Gait/drug effects , Gait/physiology , Immunosuppressive Agents/therapeutic use , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Accelerometry/instrumentation , Age Factors , Animals , Clinical Decision-Making/methods , Discriminant Analysis , Disease Models, Animal , Disease Progression , Dogs , Genotype , Linear Models , Male , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Duchenne/genetics , Phenotype , Sensitivity and Specificity , Treatment Outcome
7.
Proteomics ; 16(14): 2028-42, 2016 07.
Article in English | MEDLINE | ID: mdl-27246553

ABSTRACT

Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768).


Subject(s)
Cell- and Tissue-Based Therapy/methods , Muscle Cells/transplantation , Muscular Dystrophy, Animal/therapy , Proteome/genetics , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Dogs , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Internet , Molecular Sequence Annotation , Muscle Cells/cytology , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Oxidative Stress , Proteome/metabolism , Proteomics/methods , Software , Stem Cells/cytology , Treatment Outcome
8.
BMC Musculoskelet Disord ; 17: 209, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27170302

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked muscle disease that leads to fibre necrosis and progressive paralysis. At present, DMD remains a lethal disease without any effective treatment, requiring a better understanding of the pathophysiological processes and comprehensive assessment of the newly identified therapeutic strategies. MicroRNAs including members of the muscle-specific myomiR family have been identified as being deregulated in muscle of DMD patients and in mdx mice used as a model for DMD. In recent years, the Golden Retriever muscular dystrophy (GRMD) dog has appeared as the crucial animal model for objectively assessing the potential of new innovative approaches. Here, we first aim at establishing the muscle expression pattern of five selected miRNAs in this clinically relevant model to determine if they are similarly affected compared with other DMD contexts. Second, we attempt to show whether these miRNAs could be impacted by the systemic delivery of a promising stem cell candidate (referred to as MuStem cells) to implement our knowledge on its mode of action and/or identify markers associated with cell therapy efficacy. METHODS: A comparative study of miRNAs expression levels and cellular localization was performed on 9-month-old healthy dogs, as well as on three sub-sets of GRMD dog (without immunosuppression or cell transplantation, with continuous immunosuppressive regimen and with MuStem cell transplantation under immunosuppression), using RT-qPCR and in situ hybridization. RESULTS: We find that miR-222 expression is markedly up-regulated in GRMD dog muscle compared to healthy dog, while miR-486 tends to be down-expressed. Intriguingly, the expression of miR-1, miR-133a and miR-206 does not change. In situ hybridization exploration reveals, for the first time, that miR-486 and miR-206 are mainly localized in newly regenerated fibres in GRMD dog muscle. In addition, we show that cyclosporine-based immunosuppression, classically used in allogeneic cell transplantation, exclusively impacts the miR-206 expression. Finally, we demonstrate that intra-arterial administration of MuStem cells results in up-regulation of miR-133a and miR-222 concomitantly with a down-expression of two sarcomeric proteins corresponding to miR-222 targets. CONCLUSION: We point out a differential muscle expression of miR-222 and miR-486 associated with the pathophysiology of the clinically relevant GRMD dog model with a tissue localization focused on regenerated fibres. We also establish a modified expression of miR-133a and miR-222 subsequent to MuStem cell infusion.


Subject(s)
MicroRNAs/metabolism , Muscle Cells/transplantation , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Stem Cell Transplantation/methods , Animals , Biomarkers/metabolism , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Disease Models, Animal , Dogs , Down-Regulation , Fluorescent Antibody Technique , Humans , Immunosuppression Therapy/methods , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , In Situ Hybridization , Injections, Intra-Arterial , Mice , Mice, Inbred mdx , MicroRNAs/drug effects , Muscle Cells/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/pathology , Myosin Heavy Chains/metabolism , Stem Cells/metabolism , Up-Regulation
9.
Int J Biol Macromol ; 266(Pt 1): 130823, 2024 May.
Article in English | MEDLINE | ID: mdl-38492703

ABSTRACT

Preclinical data acquired for human muscle stem (hMuStem) cells indicate their great repair capacity in the context of muscle injury. However, their clinical potential is limited by their moderate ability to survive after transplantation. To overcome these limitations, their encapsulation within protective environment would be beneficial. In this study, tunable calcium-alginate hydrogels obtained through molding method using external or internal gelation were investigated as a new strategy for hMuStem cell encapsulation. The mechanical properties of these hydrogels were characterized in their fully hydrated state by compression experiments using Atomic Force Microscopy. Measured elastic moduli strongly depended on the gelation mode and calcium/alginate concentrations. Values ranged from 1 to 12.5 kPa and 3.9 to 25 kPa were obtained for hydrogels prepared following internal and external gelation, respectively. Also, differences in mechanical properties of hydrogels resulted from their internal organization, with an isotropic structure for internal gelation, while external mode led to anisotropic one. It was further shown that viability, morphological and myogenic differentiation characteristics of hMuStem cells incorporated within alginate hydrogels were preserved after their release. These results highlight that hMuStem cells encapsulated in calcium-alginate hydrogels maintain their functionality, thus allowing to develop muscle regeneration protocols to improve their therapeutic efficacy.


Subject(s)
Alginates , Cell Differentiation , Hydrogels , Stem Cells , Stress, Mechanical , Alginates/chemistry , Humans , Hydrogels/chemistry , Stem Cells/cytology , Cell Differentiation/drug effects , Cell Survival/drug effects , Elastic Modulus , Tissue Scaffolds/chemistry
10.
Article in English | MEDLINE | ID: mdl-38752570

ABSTRACT

We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.

11.
Sci Rep ; 13(1): 10808, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402811

ABSTRACT

Dystrophic muscle is characterized by necrosis/regeneration cycles, inflammation, and fibro-adipogenic development. Conventional histological stainings provide essential topographical data of this remodeling but may be limited to discriminate closely related pathophysiological contexts. They fail to mention microarchitecture changes linked to the nature and spatial distribution of tissue compartment components. We investigated whether label-free tissue autofluorescence revealed by Synchrotron deep ultraviolet (DUV) radiation could serve as an additional tool for monitoring dystrophic muscle remodeling. Using widefield microscopy with specific emission fluorescence filters and microspectroscopy defined by high spectral resolution, we analyzed samples from healthy dogs and two groups of dystrophic dogs: naïve (severely affected) and MuStem cell-transplanted (clinically stabilized) animals. Multivariate statistical analysis and machine learning approaches demonstrated that autofluorescence emitted at 420-480 nm by the Biceps femoris muscle effectively discriminates between healthy, dystrophic, and transplanted dog samples. Microspectroscopy showed that dystrophic dog muscle displays higher and lower autofluorescence due to collagen cross-linking and NADH respectively than that of healthy and transplanted dogs, defining biomarkers to evaluate the impact of cell transplantation. Our findings demonstrate that DUV radiation is a sensitive, label-free method to assess the histopathological status of dystrophic muscle using small amounts of tissue, with potential applications in regenerative medicine.


Subject(s)
Muscular Dystrophies , Animals , Dogs , Random Forest , Support Vector Machine , Muscular Dystrophies/pathology , Muscular Dystrophies/therapy , Ultraviolet Rays , Microspectrophotometry , Microscopy , Stem Cell Transplantation , Male , Biopsy
12.
Am J Pathol ; 179(5): 2501-18, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21924229

ABSTRACT

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dog's clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients.


Subject(s)
Muscle Cells/transplantation , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/therapy , Stem Cell Transplantation/methods , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dogs , Dystrophin/metabolism , Immunosuppressive Agents/pharmacology , Injections, Intramuscular , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Stem Cells/cytology , Transplantation, Homologous
13.
Stem Cell Res Ther ; 13(1): 7, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012660

ABSTRACT

BACKGROUND: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. METHODS: The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. RESULTS: Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. CONCLUSIONS: Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs.


Subject(s)
Adult Stem Cells , Mesenchymal Stem Cells , Cell Proliferation , Coculture Techniques , Humans , Lymphocyte Activation
14.
J Proteome Res ; 10(5): 2465-78, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21410286

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by null mutations in the dystrophin gene, leading to progressive and unrelenting muscle loss. Although the genetic basis of DMD is well resolved, the cellular mechanisms associated with the physiopathology remain largely unknown. Increasing evidence suggests that secondary mechanisms, as the alteration of key signaling pathways, may play an important role. In order to identify reliable biomarkers and potential therapeutic targets, and taking advantage of the clinically relevant Golden Retriever Muscular Dystrophy (GRMD) dog model, a proteomic study was performed. Isotope-coded affinity tag (ICAT) profiling was used to compile quantitative changes in protein expression profiles of the vastus lateralis muscles of 4-month old GRMD vs healthy dogs. Interestingly, the set of under-expressed proteins detected appeared primarily composed of metabolic proteins, many of which have been shown to be regulated by the transcriptional peroxisome proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1α). Subsequently, we were able to showed that PGC1-α expression is dramatically reduced in GRMD compared to healthy muscle. Collectively, these results provide novel insights into the molecular pathology of the clinically relevant animal model of DMD, and indicate that defective energy metabolism is a central hallmark of the disease in the canine model.


Subject(s)
Biomarkers/metabolism , Energy Metabolism/physiology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Proteome/metabolism , Proteomics/methods , Animals , DNA Primers/genetics , Dogs , Immunoblotting , Immunohistochemistry , Mass Spectrometry , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/metabolism
15.
J Cell Mol Med ; 15(1): 119-33, 2011 Jan.
Article in English | MEDLINE | ID: mdl-19840193

ABSTRACT

Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56(+) fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H(2) O(2) )-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Myoblasts/enzymology , Stromal Cells/enzymology , Adult , Animals , Blotting, Western , Cell Survival , Cells, Cultured , Flow Cytometry , Fluorescent Antibody Technique , Humans , Hydrogen Peroxide/pharmacology , Mice , Mice, SCID , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Oxidants/pharmacology , RNA, Messenger/genetics , Rabbits , Rats , Reverse Transcriptase Polymerase Chain Reaction
16.
Am J Pathol ; 174(4): 1459-70, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19264909

ABSTRACT

Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy, and although the genetic basis of this disease is well defined, the overall mechanisms that define its pathogenesis remain obscure. Alterations in individual signaling pathways have been described, but little information is available regarding their putative implications in Duchenne muscular dystrophy pathogenesis. Here, we studied the status of various major signaling pathways in the Golden Retriever muscular dystrophy dog that specifically reproduces the full spectrum of human pathology. Using antibody arrays, we found that Akt1, glycogen synthase kinase-3beta (GSK3beta), 70-kDa ribosomal protein S6 kinase (p70S6K), extracellular signal-regulated kinases 1/2, and p38delta and p38gamma kinases all exhibited decreased phosphorylation in muscle from a 4-month-old animal with Golden Retriever muscular dystrophy, revealing a deep alteration of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways. Immunohistochemistry analysis revealed the presence of muscle fibers exhibiting a cytosolic accumulation of Akt1, GSK3beta, and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN), an enzyme counteracting PI3K-mediated Akt activation. Enzymatic assays established that these alterations in phosphorylation and expression levels were associated with decreased Akt and increased GSK3beta and PTEN activities. PTEN/GSK3beta-positive fibers were also observed in muscle sections from 3- and 36-month-old animals, indicating long-term PI3K/Akt pathway alteration. Collectively, our data suggest that increased PTEN expression and activity play a central role in PI3K/Akt/GSK3beta and p70S6K pathway modulation, which could exacerbate the consequences of dystrophin deficiency.


Subject(s)
Muscular Dystrophy, Animal/physiopathology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Blotting, Western , Dogs , Dystrophin/deficiency , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Immunohistochemistry , Microscopy, Confocal , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Phosphorylation , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/physiology
17.
Mol Ther Methods Clin Dev ; 18: 446-463, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32695846

ABSTRACT

Myocardial infarction is one of the leading causes of mortality and morbidity worldwide. Whereas transplantation of several cell types into the infarcted heart has produced promising preclinical results, clinical studies using analogous human cells have shown limited structural and functional benefits. In dogs and humans, we have described a type of muscle-derived stem cells termed MuStem cells that efficiently promoted repair of injured skeletal muscle. Enhanced survival rate, long-term engraftment, and participation in muscle fiber formation were reported, leading to persistent tissue remodeling and clinical benefits. With the consideration of these features that are restricted or absent in cells tested so far for myocardial infarction, we wanted to investigate the capacity of human MuStem cells to repair infarcted hearts. Their local administration in immunodeficient rats 1 week after induced infarction resulted in reduced fibrosis and increased angiogenesis 3 weeks post-transplantation. Importantly, foci of human fibers were detected in the infarct site. Treated rats also showed attenuated left-ventricle dilation and preservation of contractile function. Interestingly, no spontaneous arrhythmias were observed. Our findings support the potential of MuStem cells, which have already been proposed as therapeutic candidates for dystrophic patients, to treat myocardial infarction and position them as an attractive tool for muscle-regenerative medicine.

18.
Front Immunol ; 10: 2131, 2019.
Article in English | MEDLINE | ID: mdl-31552055

ABSTRACT

Corticosteroids (CS) are standard therapy for the treatment of Duchenne's muscular dystrophy (DMD). Even though they decrease inflammation, they have limited efficacy and are associated with significant side effects. There is therefore the need for new protolerogenic treatments to replace CS. Dystrophin-deficient rats (Dmdmdx ) closely resemble the pathological phenotype of DMD patients. We performed the first Immunophenotyping of Dmdmdx rats and showed leukocyte infiltration in skeletal and cardiac muscles, which consisted mostly of macrophages and T cells including CD45RChigh T cells. Muscles of DMD patients also contain elevated CD45RChigh T cells. We treated Dmdmdx rats with an anti-CD45RC MAb used in previous studies to deplete CD45RChigh T cells and induce immune tolerance in models of organ transplantation. Treatment of young Dmdmdx rats with anti-CD45RC MAb corrected skeletal muscle strength and was associated with depletion of CD45RChigh T cells with no side effects. Treatment of young Dmdmdx rats with prednisolone resulted in increase in skeletal muscle strength but also severe growth retardation. In conclusion, anti-CD45RC MAb treatment has potential in the treatment of DMD and might eventually result in reduction or elimination of CS use.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Leukocyte Common Antigens/antagonists & inhibitors , Muscular Dystrophy, Duchenne/drug therapy , Animals , Cytokines/blood , Cytokines/immunology , Disease Models, Animal , Immunophenotyping , Leukocyte Common Antigens/immunology , Macrophages/immunology , Muscle Strength/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/immunology , Muscular Dystrophy, Duchenne/immunology , Rats , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology
19.
Stem Cell Res Ther ; 9(1): 128, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720259

ABSTRACT

BACKGROUND: Canine MuStem cells have demonstrated regenerative efficacy in a dog model of muscular dystrophy, and the recent characterization of human counterparts (hMuStem) has highlighted the therapeutic potential of this muscle-derived stem cell population. To date, these cells have only been generated in research-grade conditions. However, evaluation of the clinical efficacy of any such therapy will require the production of hMuStem cells in compliance with good manufacturing practices (GMPs). Because the current use of fetal bovine serum (FBS) to isolate and expand hMuStem cells raises several ethical, safety, and supply concerns, we assessed the use of two alternative xeno-free blood derivatives: human serum (HS) and a human platelet lysate (hPL). METHODS: hMuStem cells were isolated and expanded in vitro in either HS-supplemented or hPL-supplemented media and the proliferation rate, clonogenicity, myogenic commitment potential, and oligopotency compared with that observed in FBS-supplemented medium. Flow cytometry and high-throughput 3'-digital gene expression RNA sequencing were used to characterize the phenotype and global gene expression pattern of hMuStem cells cultured with HS or hPL. RESULTS: HS-supplemented and hPL-supplemented media both supported the isolation and long-term proliferation of hMuStem cells. Compared with FBS-based medium, both supplements enhanced clonogenicity and allowed for a reduction in growth factor supplementation. Neither supplement altered the cell lineage pattern of hMuStem cells. In vitro differentiation assays revealed a decrease in myogenic commitment and in the fusion ability of hMuStem cells when cultured with hPL. In return, this reduction of myogenic potential in hPL-supplemented cultures was rapidly reversed by substitution of hPL with HS or fibrinogen-depleted hPL. Moreover, culture of hMuStem cells in hPL hydrogel and fibrinogen-depleted hPL demonstrated that myogenic differentiation potential is maintained in heparin-free hPL derivatives. CONCLUSIONS: Our findings indicate that HS and hPL are efficient and viable alternatives to FBS for the preparation of hMuStem cell batches in compliance with GMPs.


Subject(s)
Blood Platelets/metabolism , Cell- and Tissue-Based Therapy/methods , Serum/chemistry , Adolescent , Adult , Animals , Cell Differentiation , Cell Proliferation , Dogs , Female , Humans , Male , Young Adult
20.
Acta Neuropathol Commun ; 6(1): 116, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382921

ABSTRACT

Pompe disease, which is due to acid alpha-glucosidase deficiency, is characterized by skeletal muscle dysfunction attributed to the accumulation of glycogen-filled lysosomes and autophagic buildup. Despite the extensive tissue damages, a failure of satellite cell (SC) activation and lack of muscle regeneration have been reported in patients. However, the origin of this defective program is unknown. Additionally, whether these deficits occur gradually over the disease course is unclear. Using a longitudinal pathophysiological study of two muscles in a Pompe mouse model, here, we report that the enzymatic defect results in a premature saturating glycogen overload and a high number of enlarged lysosomes. The muscles gradually display profound remodeling as the number of autophagic vesicles, centronucleated fibers, and split fibers increases and larger fibers are lost. Only a few regenerated fibers were observed regardless of age, although the SC pool was preserved. Except for the early age, during which higher numbers of activated SCs and myoblasts were observed, no myogenic commitment was observed in response to the damage. Following in vivo injury, we established that muscle retains regenerative potential, demonstrating that the failure of SC participation in repair is related to an activation signal defect. Altogether, our findings provide new insight into the pathophysiology of Pompe disease and highlight that the activation signal defect of SCs compromises muscle repair, which could be related to the abnormal energetic supply following autophagic flux impairment.


Subject(s)
Glycogen Storage Disease Type II/pathology , Muscle, Skeletal/physiopathology , Regeneration/physiology , Satellite Cells, Skeletal Muscle/physiology , Age Factors , Animals , Autophagy/genetics , Cardiotoxins/toxicity , Collagen/metabolism , Disease Models, Animal , Dystrophin/metabolism , Gene Expression Regulation/genetics , Glucan 1,4-alpha-Glucosidase/deficiency , Glucan 1,4-alpha-Glucosidase/genetics , Glycogen/metabolism , Glycogen Storage Disease Type II/etiology , Humans , Ki-67 Antigen/metabolism , Laminin/metabolism , Longitudinal Studies , Lysosomes/metabolism , Lysosomes/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/injuries , Regeneration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL