Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hum Mol Genet ; 26(1): 90-108, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28007902

ABSTRACT

Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.


Subject(s)
Hippocampus/metabolism , Hippocampus/pathology , Microtubule-Associated Proteins/physiology , Neurons/metabolism , Neurons/pathology , Neuropeptides/physiology , Animals , Brain/metabolism , Brain/pathology , Brain/ultrastructure , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/ultrastructure , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/ultrastructure , Doublecortin Domain Proteins , Doublecortin Protein , Female , Hippocampus/ultrastructure , Image Processing, Computer-Assisted , Laser Capture Microdissection , Male , Mice , Mice, Knockout , Microscopy, Confocal , Neurons/ultrastructure
2.
Int J Neuropsychopharmacol ; 16(3): 593-606, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22717119

ABSTRACT

This study examined in naive or hemiparkinsonian rats the effect of various serotonin 2C (5-HT(2C)) receptor ligands differing in their intrinsic activity at 5-HT(2C) receptors on purposeless oral movements, a motor response integrated in the basal ganglia. Intraperitoneal administration of a non-selective [meta-chlorophenylpiperazine (m-CPP) 0.1-3 mg/kg], preferential [S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine, Ro60-0175, 0.1-3 mg/kg] or selective [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole, WAY163909, 0.3-10 mg/kg] 5-HT(2C) agonists enhanced oral bouts in naive rats. The 5-HT(2C) inverse agonists SB206553 [1-20 mg/kg; 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole] and S32006 [1-20 mg/kg; N-pyridin-3-yl-1,2-dihydro-3H-benzo[e]indole-3-carboxamide], but not the 5-HT(2C) antagonist SB243213 [1-10 mg/kg; 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-trifluoromethylindoline], likewise dose-dependently enhanced oral movements. The effects induced by preferential 5-HT(2C) agonists and inverse agonists, but not by the cholinomimetic drug pilocarpine (5 mg/kg), were abolished by SB243213 underpinning its specificity. S32006-induced oral bouts was unaffected by the 5,7-dihydroxytryptamine lesions of 5-HT neurons. Nigrostriatal dopaminergic lesions potentiated oral effects induced by the agonists Ro60-0175 (3 mg/kg) and WAY163909 (1 mg/kg), but not by the inverse agonist SB206553 (10 mg/kg). The effect of Ro60-0175 in dopamine-lesioned rats was suppressed by SB243213. These data show that 5-HT(2C) agonists and full inverse agonists (but not neutral antagonists) perturb oral activity in rodents, paralleling studies of common antidepressant, anxiolytic and antipsychotic properties. The differential sensitivity of their actions to depletion of dopamine suggests recruitment of different contrasting neural mechanisms in the basal ganglia.


Subject(s)
Disease Models, Animal , Drug Inverse Agonism , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Receptor, Serotonin, 5-HT2C/physiology , Serotonin 5-HT2 Receptor Agonists/toxicity , Animals , Male , Movement Disorders , Protein Binding/physiology , Rats , Rats, Sprague-Dawley
3.
J Pharmacol Exp Ther ; 343(1): 115-24, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22767532

ABSTRACT

Skin wound healing is a natural and intricate process that takes place after injury, involving different sequential phases such as hemostasis, inflammatory phase, proliferative phase, and remodeling that are associated with complex biochemical events. The interruption or failure of wound healing leads to chronic nonhealing wounds or fibrosis-associated diseases constituting a major health problem where, unfortunately, medicines are not very effective. The objective of this study was to evaluate the capacity of Cicaderma ointment (Boiron, Lyon, France) to accelerate ulcer closure without fibrosis and investigate wound healing dynamic processes. We used a necrotic ulcer model in mice induced by intradermal doxorubicin injection, and after 11 days, when the ulcer area was maximal, we applied Vaseline petroleum jelly or Cicaderma every 2 days. Topical application of Cicaderma allowed a rapid recovery of mature epidermal structure, a more compact and organized dermis and collagen bundles compared with the Vaseline group. Furthermore, the expression of numerous cytokines/molecules in the ulcer was increased 11 days after doxorubicin injection compared with healthy skin. Cicaderma rapidly reduced the level of proinflammatory cytokines, mainly tumor necrosis factor (TNF)-α and others of the TNF pathway, which can be correlated to a decrease of polymorphonuclear recruitment. It is noteworthy that the modulation of inflammation through TNF-α, macrophage inflammatory protein-1α, interleukin (IL)-12, IL-4, and macrophage-colony-stimulating factor was maintained 9 days after the first ointment application, facilitating the wound closure without affecting angiogenesis. These cytokines seem to be potential targets for therapeutic approaches in chronic wounds. Our results confirm the use of Cicaderma for accelerating skin wound healing and open new avenues for sequential treatments to improve healing.


Subject(s)
Inflammation Mediators/therapeutic use , Plant Extracts/administration & dosage , Skin Ulcer/drug therapy , Wound Healing/drug effects , Administration, Topical , Animals , Doxorubicin/toxicity , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Ointments , Plant Components, Aerial , Plant Extracts/isolation & purification , Skin Ulcer/metabolism , Skin Ulcer/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Wound Healing/physiology
4.
PLoS One ; 8(9): e72622, 2013.
Article in English | MEDLINE | ID: mdl-24023755

ABSTRACT

Heterotopic or aberrantly positioned cortical neurons are associated with epilepsy and intellectual disability. Various mouse models exist with forms of heterotopia, but the composition and state of cells developing in heterotopic bands has been little studied. Dcx knockout (KO) mice show hippocampal CA3 pyramidal cell lamination abnormalities, appearing from the age of E17.5, and mice suffer from spontaneous epilepsy. The Dcx KO CA3 region is organized in two distinct pyramidal cell layers, resembling a heterotopic situation, and exhibits hyperexcitability. Here, we characterized the abnormally organized cells in postnatal mouse brains. Electron microscopy confirmed that the Dcx KO CA3 layers at postnatal day (P) 0 are distinct and separated by an intermediate layer devoid of neuronal somata. We found that organization and cytoplasm content of pyramidal neurons in each layer were altered compared to wild type (WT) cells. Less regular nuclei and differences in mitochondria and Golgi apparatuses were identified. Each Dcx KO CA3 layer at P0 contained pyramidal neurons but also other closely apposed cells, displaying different morphologies. Quantitative PCR and immunodetections revealed increased numbers of oligodendrocyte precursor cells (OPCs) and interneurons in close proximity to Dcx KO pyramidal cells. Immunohistochemistry experiments also showed that caspase-3 dependent cell death was increased in the CA1 and CA3 regions of Dcx KO hippocampi at P2. Thus, unsuspected ultrastructural abnormalities and cellular heterogeneity may lead to abnormal neuronal function and survival in this model, which together may contribute to the development of hyperexcitability.


Subject(s)
Brain/metabolism , Brain/pathology , Hippocampus/metabolism , Hippocampus/pathology , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Animals , Brain/ultrastructure , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/ultrastructure , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/ultrastructure , Caspase 3/metabolism , Doublecortin Domain Proteins , Doublecortin Protein , Female , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , Golgi Apparatus/ultrastructure , Immunohistochemistry , In Situ Hybridization , Male , Mice , Mice, Knockout , Microscopy, Electron , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/ultrastructure , Neuropeptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL