Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Am Chem Soc ; 145(23): 12823-12836, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37253643

ABSTRACT

The search for efficient anodic electrochromic materials is essential to the development of electrochromic devices, such as smart windows. Magnetron-sputtered lithium-nickel-tungsten mixed oxides are good candidates to tackle this issue; however, they display a complicated microstructure, making it difficult to pinpoint the origin of their electro-optical properties. Herein, by exploring the Li2O-NiO-WO3 phase diagram, we obtained a new phase, Li2Ni2W2O9, that crystallizes in the orthorhombic Pbcn space group. This material can reversibly uptake/release 0.75 Li+ (31 mA h·g-1) when cycled between 2.5 and 5.0 V versus Li+/Li. Moreover, through operando optical microscopy, we show that this new phase is electrochromic, and crucial information can be accessed about the diffusion-limited insertion of lithium at the single-particle scale. This study sets the ground for future syntheses of electrochemically active materials crystallizing in the ramsayite structure and details how the electrochromic properties of battery materials can be used to shed some light on their electrochemical mechanisms.

2.
Inorg Chem ; 62(5): 2073-2082, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36701311

ABSTRACT

Crystal structures can strongly deviate from bulk states when confined into nanodomains. These deviations may deeply affect properties and reactivity and then call for a close examination. In this work, we address the case where extended crystal defects spread through a whole solid and then yield an aperiodic structure and specific reactivity. We focus on iron boride, α-FeB, whose structure has not been elucidated yet, thus hindering the understanding of its properties. We synthesize the two known phases, α-FeB and ß-FeB, in molten salts at 600 and 1100 °C, respectively. The experimental X-ray diffraction (XRD) data cannot be satisfactorily accounted for by a periodic crystal structure. We then model the compound as a stochastic assembly of layers of two structure types. Refinement of the powder XRD pattern by considering the explicit scattering interference of the different layers allows quantitative evaluation of the size of these domains and of the stacking faults between them. We, therefore, demonstrate that α-FeB is an intergrowth of nanometer-thick slabs of two structure types, ß-FeB and CrB-type structures, in similar proportions. We finally discuss the implications of this novel structure on the reactivity of the material and its ability to perform insertion reactions by comparing the reactivities of α-FeB and ß-FeB as reagents in the synthesis of a model layered material: Fe2AlB2. Using synchrotron-based in situ X-ray diffraction, we elucidate the mechanisms of the formation of Fe2AlB2. We highlight the higher reactivity of the intergrowth α-FeB in agreement with structural relationships.

3.
Angew Chem Int Ed Engl ; 62(26): e202303487, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37042950

ABSTRACT

Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4 Si2 O7 Cl2 . We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids.


Subject(s)
Nanostructures , Sodium Chloride/chemistry , Anions/chemistry , Nanostructures/chemistry , Zinc/chemistry , Silicon Dioxide/chemistry , Chlorides/chemistry , Catalysis , Electrochemistry/methods
4.
Nat Mater ; 20(11): 1545-1550, 2021 11.
Article in English | MEDLINE | ID: mdl-34326505

ABSTRACT

Insertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true. In this work, we show the feasibility of reversibly intercalating Li+ electrochemically into VX3 compounds (X = Cl, Br, I) via the use of superconcentrated electrolytes (5 M LiFSI in dimethyl carbonate), hence opening access to a family of LixVX3 phases. Moreover, through an electrolyte engineering approach, we unambiguously prove that the positive attribute of superconcentrated electrolytes against the solubility of inorganic compounds is rooted in a thermodynamic rather than a kinetic effect. The mechanism and corresponding impact of our findings enrich the fundamental understanding of superconcentrated electrolytes and constitute a crucial step in the design of novel insertion compounds with tunable properties for a wide range of applications including Li-ion batteries and beyond.


Subject(s)
Electrolytes , Lithium , Electric Power Supplies , Electrochemistry , Electrodes , Electrolytes/chemistry , Lithium/chemistry
5.
Nat Mater ; 20(3): 353-361, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33432141

ABSTRACT

Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g-1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.

6.
Inorg Chem ; 60(7): 4252-4260, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33480696

ABSTRACT

Boron-rich solids exhibit specific crystal structures and unique properties, which are only very scarcely addressed in nanoparticles. In this work, we address the original inorganic structural chemistry and reactivity of boron-rich nanoparticles, by reporting the first occurrence of sodium carbaboride nanocrystals based on the NaB5C crystal structure. To design these sub-10 nm nano-objects, we use liquid-phase synthesis in molten salts at 900 °C. By combining a set of characterization tools including powder X-ray powder diffraction, transmission electron microscopy, solid-state nuclear magnetic resonance coupled to DFT modeling, and X-ray photoelectron spectroscopy, we demonstrate that these nanocrystals deviate from the ideal stoichiometry reported for the bulk compound. We suggest that the carbon and sodium contents compensate each other to ensure that the octahedral cluster-based framework is stabilized by fulfilling an electron counting rule. These nanocrystals encompass substituted octahedral covalent structural building units not reported in the related bulk compound. They then shed new light on the ability of nanoparticles to host wide solid solution ranges in covalent solids and then to yield new solids. We finally show that these nanocrystals are efficient single sources of boron and carbon to form a nanostructured boron carbide, thus paving the way to new nanostructured materials.

7.
Inorg Chem ; 60(18): 14310-14317, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34472850

ABSTRACT

The reaction between P2-type honeycomb layered oxides Na2Ni2TeO6 and K2Ni2TeO6 enables the formation of NaKNi2TeO6. The compound is characterized by X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy, and the structure is discussed through density functional theory calculations. In addition to the honeycomb Ni/Te cationic ordering, NaKNi2TeO6 exhibits a unique example of alternation of sodium and potassium layers instead of a random alkali-mixed occupancy. Stacking fault simulations underline the impact of the successive position of the Ni/Te honeycomb layers and validate the presence of multiple stacking sequences within the powder material, in proportions that evolve with the synthesis conditions. In a broader context, this work contributes to a better understanding of the alkali-mixed layered compounds.

8.
Inorg Chem ; 59(9): 6528-6540, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32286842

ABSTRACT

Solid electrolytes have regained tremendous interest recently in light of the exposed vulnerability of current rechargeable battery technologies. While designing solid electrolytes, most efforts concentrated on creating structural disorder (vacancies, interstitials, etc.) in a cationic Li/Na sublattice to increase ionic conductivity. In phosphates, the ionic conductivity can also be increased by rotational disorder in the anionic sublattice, via a paddle-wheel mechanism. Herein, we report on Na4Zn(PO4)2 which is designed from Na3PO4, replacing Na+ with Zn2+ and introducing a vacancy for charge balance. We show that Na4Zn(PO4)2 undergoes a series of structural transitions under temperature, which are associated with an increase in ionic conductivity by several orders of magnitude. Our detailed crystallographic study, combining electron, neutron, and X-ray powder diffraction, reveals that the room-temperature form, α-Na4Zn(PO4)2, contains orientationally ordered PO4 groups, which undergo partial and full rotational disorder in the high-temperature ß- and γ-polymorphs, respectively. We furthermore showed that the highly conducting γ-polymorph could be stabilized at room temperature by ball-milling, whereas the ß-polymorph can be stabilized by partial substitution of Zn2+ with Ga3+ and Al3+. These findings emphasize the role of rotational disorder as an extra parameter to design new solid electrolytes.

9.
J Am Chem Soc ; 141(29): 11452-11464, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31290652

ABSTRACT

Disordered rock salt cathodes showing both anionic and cationic redox are being extensively studied for their very high energy storage capacity. Mn-based disordered rock salt compounds show much higher energy efficiency compared to the Ni-based materials as a result of the different voltage hysteresis, 0.5 and 2 V, respectively. To understand the origin of this difference, we herein report the design of two model compounds, Li1.3Ni0.27Ta0.43O2 and Li1.3Mn0.4Ta0.3O2, and study their charge compensation mechanism through the uptake and removal of Li via an arsenal of analytical techniques. We show that the different voltage hysteresis with Ni or Mn substitution is due to the different reduction potential for anionic redox. We rationalized such a finding by DFT calculations and propose this phenomenon to be nested in the smaller charge transfer band gap of the Ni-based compounds compared to that of the Mn ones. Altogether, these findings provide vital guidelines for designing high-capacity disordered rock salt cathode materials based on anionic redox activity for the next generation of Li ion batteries.

10.
Inorg Chem ; 58(22): 15644-15651, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31697483

ABSTRACT

With increasing hopes placed on the Na-ion battery technology to complement the current Li-ion battery systems, it is important to improve the energy density of Na-based cathode materials. Na-rich rocksalt oxides, Na1+xM1-xO2 (M = transition metal), combining cationic and anionic redox activity, could provide the necessary increase in capacity to achieve this goal, but their synthesis remains challenging compared to the Li analogues. As an alternative, mixed compounds Na(AxM1-x)O2, with A being an electropositive cation such as Li, Mg, or Zn sitting in the transition-metal layer, have been reported. As a continuation, we herein prepared the mixed Na(Li1/3Ir2/3)O2 phase and compared its structure and electrochemical properties with the well-known Li2IrO3 and Na2IrO3 parent materials. By mixing Na and Li in the material, the stacking sequence of the transition-metal honeycomb layers in Na(Li1/3Ir2/3)O2 is modified compared to the two parent materials, resulting in the presence of extra superstructure peaks in X-ray diffraction data. Using electrochemical characterization and an in-situ X-ray diffraction technique, the mixed Na(Li1/3Ir2/3)O2 was found to be unstable both in Li and Na batteries and to separate into Na-rich NaxIrO3 and Li-rich LixIrO3 phases due to the competition between electrochemical (de)insertion, cation exchange with the electrolyte, and segregation of Na and Li in the material. These findings highlight important challenges and offer useful insight into guide the design of new mixed Na(AxM1-x)O2 cathode materials with high capacity for Na-ion batteries.

11.
Inorg Chem ; 58(3): 1774-1781, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30204422

ABSTRACT

Ionic conductivity in a compound is rooted in a delicate interplay between its crystal structure and its structural defects (vacancies, interstitials, etc.). Hence, understanding this interplay is of utmost importance to design new solid state electrolytes. To shed some light on the above query, we investigated the rich crystal chemistry of Li6Zn(P2O7)2. This compound undergoes multiple structural transitions under the influence of temperature, which increases the conductivity by several orders and lowers the activation energy. We explained this jump in conductivity by the increased disorder associated with cation mixing. Our structural exploration indicates that both the room-temperature α-polymorph and the high-temperature ζ-polymorph crystallize in a C2/ c space group but with a much smaller unit cell volume for the latter. While their structural framework based on P2O74- is similar, the ζ-polymorph presents a fully disordered Li/Zn sublattice, while it is fully ordered for the α-polymorph. Furthermore, the bond valence energy landscape calculations show that in the α-polymorph, the Li+ conduction is two-dimensional, whereas because of Li+/Zn2+ site mixing, Li+ can hop three-dimensionally in the ζ-polymorph.

12.
Inorg Chem ; 58(17): 11546-11552, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31436964

ABSTRACT

Layered oxide compositions Li3-xNaxNi2SbO6 have been prepared by solid-state synthesis. A complete solid solution is evidenced and characterized by X-ray and neutron diffraction as well as 7Li and 23Na solid-state nuclear magnetic resonance spectroscopy. The transition-metal layer is characterized by the classic honeycomb Ni2+/Sb5+ ordering, whereas a more uncommon randomly mixed occupancy of lithium and sodium is evidenced within the alkali interslab space. In situ X-ray diffraction and density functional theory calculations show that this alkali disordered feature is entropically driven. Fast cooling then appears as a synthesis root to confine bidimensional alkali glass within crystalline layered oxides.

13.
Nat Mater ; 16(5): 580-586, 2017 05.
Article in English | MEDLINE | ID: mdl-28250444

ABSTRACT

Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a ß-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, ß-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

14.
Inorg Chem ; 57(18): 11646-11654, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30156407

ABSTRACT

The search for high Li-ion conducting ceramics has regained tremendous interest triggered by the renaissance of the all-solid-state battery. Within this context we herein reveal the impact of structural polymorphism of lithium copper pyroborate Li6CuB4O10 on its ionic conductivity. Using combined in situ synchrotron X-ray and neutron powder diffraction, a structural and synthetic relationship between α- and ß-Li6CuB4O10 could be established and its impact on ionic conductivity evolution was followed using electrochemical impedance spectroscopy. We show that the high temperature form of Li6CuB4O10 exhibits a high Li-ion conductivity (2.7 mS cm-1 at 350 °C) and solve its crystal structure for the first time. Our results emphasize the significant impact of structural phase transitions on ionic conductivity and show possible high Li-ion mobility within borate based compounds.

15.
Phys Chem Chem Phys ; 20(4): 2330-2338, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29303189

ABSTRACT

Conversion type materials, in particular metal fluorides, have emerged as attractive candidates for positive electrodes in next generation Li-ion batteries (LIBs). However, their practical use is being hindered by issues related to reversibility and large polarization. To minimize these issues, a few approaches enlisting the anionic network have been considered. We herein report the electrochemical properties of bismuth oxyborate Bi4B2O9 and show that this compound reacts with lithium via a conversion reaction leading to a sustained capacity of 140 mA h g-1 when cycled between 1.7 and 3.5 V vs. Li+/Li0 while having a surprisingly small polarization (∼300 mV) in the presence of solely 5% in weight of a carbon additive. These observations are rationalized in terms of charge transfer kinetics via complementary XRD, HRTEM and NMR measurements. This finding demonstrates that borate based conversion type materials display rapid charge transfer with limited carbon additives, hence offering a new strategy to improve their overall cycling efficiency.

16.
Inorg Chem ; 56(21): 13132-13139, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29045157

ABSTRACT

We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ∼320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed to two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly "monodentate", forming one short (2.14 Å) and one long (3.01 Å) Mn-O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.

17.
Inorg Chem ; 56(4): 2013-2021, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28128934

ABSTRACT

Stabilizing new host structures through potassium extraction from K-based polyanionic materials has been proven to be an interesting approach to develop new Li+/Na+ insertion materials. Pursuing the same trend, we here report the feasibility of preparing langbeinite "Fe2(SO4)3" via electrochemical and chemical oxidation of K2Fe2(SO4)3. Additionally, we succeeded in stabilizing a new K2Cu2(SO4)3 phase via a solid-state synthesis approach. This novel compound crystallizes in a complex orthorhombic structure that differs from that of langbeinite as deduced from synchrotron X-ray and neutron powder diffraction. Electrochemically, the performance of this new phase is limited, which we explain in terms of sluggish diffusion kinetics. We further show that K2Cu2(SO4)3 decomposes into K2Cu3O(SO4)3 on heating, and we report for the first time the synthesis of fedotovite K2Cu3O(SO4)3. Finally, the fundamental attractiveness of these S = 1/2 systems for physicists is examined by neutron magnetic diffraction, which reveals the absence of a long-range ordering of Cu2+ magnetic moments down to 1.5 K.

18.
Phys Chem Chem Phys ; 19(14): 9630-9640, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28346552

ABSTRACT

Even though vanadium-modified hydroxyapatite (V-HAp) samples are very promising systems for oxidative dehydrogenation of propane, the incorporation of vanadium into the hydroxyapatite framework was reported to be limited and to lead to over-stoichiometric compounds. Here, the synthesis of a Ca10(PO4)6-x(VO4)x(OH)2 stoichiometric solid solution using a co-precipitation method is monitored in the whole composition range (0 ≤ x ≤ 6) by controlling the pH of the precipitation medium, with continuous (the first series of samples) or periodic (the second series of samples) addition of NH4OH during the precipitation step or during the maturation step, respectively. It is demonstrated that the changes in pH conditions result in materials of a substantial difference in terms of the final composition. From XRD patterns and Rietveld refinements, a solid solution V-HAp phase was found to be exclusively obtained for the first series of samples for x varying from 0 to 6. This also occurred in the second series of samples but only for x lower than 4. For 4 ≤ x ≤ 5.22, the materials were composed of a mixture of V-HAp and Ca2V2O7, whereas for a x value of 6 only Ca2V2O7 was formed. The predominance of polymeric V species in solution at a high vanadium concentration deduced from the diagram of speciation of vanadium accounts for the preferential formation of Ca2V2O7 under these particular conditions. However, provided that a higher pH value was maintained, isolated VO3(OH)2- species are predominant, which accounts for the incorporation of isolated vanadates into the hydroxyapatite framework and for the well-controlled stoichiometry with Ca/(P + V) ratios found to be close to 1.67. Such a very good accommodation of vanadium in the hydroxyapatite framework is illustrated by the characterization of the local surrounding of phosphorus and vanadium species using 31P and 51V NMR, Raman and UV-vis spectroscopies.

19.
Angew Chem Int Ed Engl ; 56(17): 4792-4796, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28374445

ABSTRACT

To use water as the source of electrons for proton or CO2 reduction within electrocatalytic devices, catalysts are required for facilitating the proton-coupled multi-electron oxygen evolution reaction (OER, 2 H2 O→O2 +4 H+ +4 e- ). These catalysts, ideally based on cheap and earth abundant metals, have to display high activity at low overpotential and good stability and selectivity. While numerous examples of Co, Mn, and Ni catalysts were recently reported for water oxidation, only few examples were reported using copper, despite promising efficiencies. A rationally designed nanostructured copper/copper oxide electrocatalyst for OER is presented. This material derives from conductive copper foam passivated by a copper oxide layer and further nanostructured by electrodeposition of CuO nanoparticles. The generated electrodes are highly efficient for catalyzing selective water oxidation to dioxygen with an overpotential of 290 mV at 10 mA cm-2 in 1 m NaOH solution.

20.
Chemistry ; 22(11): 3713-8, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26807710

ABSTRACT

As a novel avenue for applications, metal-organic frameworks (MOFs) are increasingly used for heterogenizing catalytic molecular species as linkers into their crystalline framework. These multifunctional compounds can be accessed with mixed linkers synthesis or postsynthetic-exchange strategies. Major limitations still reside in their challenging characterization; in particular, to provide evidence of the genuine incorporation of the functionalized linkers into the framework and their quantification. Herein, we demonstrate that a combination of computational chemistry, spectroscopy and X-ray diffraction allows access to a non-destructive analysis of mixed-linker UiO-67-type materials featuring biphenyl- and bipyridine-dicarboxylates. Our UV/Vis-based methodology has been further applied to characterize a series of Rh-functionalized UiO-67-type catalysts. The proposed approach allows a recurrent key issue in the characterization of similar supported organometallic systems to be solved.

SELECTION OF CITATIONS
SEARCH DETAIL