Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(22): 12249-12257, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32434916

ABSTRACT

Transposable elements (TEs) are genomic parasites that are found in all genomes, some of which display sequence similarity to certain viruses. In insects, TEs are controlled by the Piwi-interacting small interfering RNA (piRNA) pathway in gonads, while the small interfering RNA (siRNA) pathway is dedicated to TE somatic control and defense against viruses. So far, these two small interfering RNA pathways are considered to involve distinct molecular effectors and are described as independent. Using Sindbis virus (SINV) in Drosophila, here we show that viral infections affect TE transcript amounts via modulations of the piRNA and siRNA repertoires, with the clearest effects in somatic tissues. These results suggest that viral acute or chronic infections may impact TE activity and, thus, the tempo of genetic diversification. In addition, these results deserve further evolutionary considerations regarding potential benefits to the host, the virus, or the TEs.


Subject(s)
Alphavirus Infections/virology , DNA Transposable Elements , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , RNA, Small Interfering/genetics , Sindbis Virus/physiology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/virology , Evolution, Molecular , Female
2.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34498066

ABSTRACT

Transposable elements (TEs) are genomic parasites, which activity is tightly controlled in germline cells. Using Sindbis virus, it was recently demonstrated that viral infections affect TE transcript amounts in somatic tissues. However, the strongest evolutionary impacts are expected in gonads, because that is where the genomes of the next generations lie. Here, we investigated this aspect using the Drosophila melanogaster Sigma virus. It is particularly relevant in the genome/TE interaction given its tropism to ovaries, which is the organ displaying the more sophisticated TE control pathways. Our results in Drosophila simulans flies allowed us to confirm the existence of a strong homeostasis of the TE transcriptome in ovaries upon infection, which, however, rely on TE-derived small RNA modulations. In addition, we performed a meta-analysis of RNA-seq data and propose that the immune pathway that is triggered upon viral infection determines the direction of TE transcript modulation in somatic tissues.


Subject(s)
DNA Transposable Elements , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Ovary/metabolism , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL