Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 22(22): 8867-8874, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36346776

ABSTRACT

Piezocatalytic water splitting is an emerging approach to generate "green hydrogen" that can address several drawbacks of photocatalytic and electrocatalytic approaches. However, existing piezocatalysts are few and with minimal structural flexibility for engineering properties. Moreover, the scope of utilizing unprocessed water is yet unknown and may widely differ from competing techniques due to the constantly varying nature of surface potential. Herein, we present Bi4TaO8Cl as a representative of a class of layered perovskite oxyhalide piezocatalysts with high hydrogen production efficiency and exciting tailorable features including the layer number, multiple cation-anion combination options, etc. In the absence of any cocatalyst and scavenger, an ultrahigh production rate is achievable (1.5 mmol g-1 h-1), along with simultaneous generation of value-added H2O2. The production rate using seawater is somewhat less yet appreciably superior to photocatalytic H2 production by most oxides as well as piezocatalysts and has been illustrated using a double-layer model for further development.

2.
Chem Sci ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39328189

ABSTRACT

Photocatalytic hydrogen peroxide (H2O2) generation is attractive for the chemical industry and energy production. However, photocatalysts generally deteriorate significantly during use to limit their application. Here we present highly active Sr2Bi3Ta2O11Cl single-crystal nanoplates for conversion of O2 to H2O2 using ambient air with a production rate of ∼3 mmol h-1 g-1 (maximum 17.5% photon conversion). Importantly, Sr2Bi3Ta2O11Cl is not only stable during 30 days of H2O2 production but also gets consistently activated to increase the H2O2 yield by >244%, unlike any other catalyst for H2O2 production. Multi-pronged characterization confirms that the synergistic increase in activity originates from in situ surface reconstruction by oxygen-deficient vacancy associate formation that improves (i) surface oxygen adsorption, (ii) sunlight harvesting, and (iii) charge-transfer from the low-valent metal atoms surrounding oxygen vacancies to reactants. The study establishes the prospects of rational defect engineering for realizing non-degrading photocatalysts for realistic H2O2 production.

3.
ACS Appl Mater Interfaces ; 16(30): 39470-39481, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39029128

ABSTRACT

The possibility of converting waste plastics into carbon dots (CDs) with 100% efficiencies using KMnO4 has emerged as a significant discovery in mitigating plastic pollution and upcycling. However, the lack of tunability of their properties, viz. aerial O2 harvesting, light-induced autophagy, and photoactivity using air as a free oxidant, has remained a bottleneck. Besides, the toxicity of KMnO4 makes the process less sustainable. Attempting to bridge these gaps, herein, we demonstrate the preparation of CDs using polyethylene with enormous controllability of their properties by utilizing less-toxic and metal-residue-free oxidizers, e.g., H2O2, HNO3, HClO4, and NaClO. We obtain structurally diverse CDs with controllable luminescent quantum yields (∼0.5-8%), excitonic lifetimes (1.3-2.3 ns), and binding energies (147-290 meV). These CDs exhibit a hugely extended range of molecular O2 harvesting (∼405-650 µM) with different amounts of strongly and weakly surface-bound O2 molecules within an estimated ratio of ∼0.77-2.51. Autophagy varied from 14 days to a nearly "no-autophagy" show. We efficiently utilized their oxygen harvesting and photocatalytic abilities to synthesize imine compounds from the corresponding amines in the open air (rate constant of ∼0.055 min-1), surpassing the literature efficiencies achieved using an O2 flow and noble metals. Notably, due to oxygen harvesting by CDs, no additional rate enhancement was observed after O2 purging, establishing the role of CDs in making free air an excellent oxidizing agent.

4.
Chem Sci ; 15(19): 7170-7177, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756816

ABSTRACT

Modern technology demands miniaturization of electronic components to build small, light, and portable devices. Hence, discovery and synthesis of new non-toxic, low cost, ultra-thin ferroelectric materials having potential applications in various electronic and optoelectronic devices are of paramount importance. However, achieving room-temperature ferroelectricity in two dimensional (2D) ultra-thin systems remains a major challenge as conventional three-dimensional ferroelectric materials lose their ferroelectricity when the thickness is brought down below a critical value owing to the depolarization field. Herein, we report room-temperature ferroelectricity in ultra-thin single-crystalline 2D nanosheets of Bi2O2S synthesized by a simple, rapid, and scalable solution-based soft chemistry method. The ferroelectric ground state of Bi2O2S nanosheets is confirmed by temperature-dependent dielectric measurements as well as piezoelectric force microscopy and spectroscopy. High resolution transmission electron microscopy analysis and density functional theory-based calculations suggest that the ferroelectricity in Bi2O2S nanosheets arises due to the local distortion of Bi2O2 layers, which destroys the local inversion symmetry of Bi2O2S.

5.
ACS Appl Mater Interfaces ; 15(27): 32425-32435, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37379232

ABSTRACT

Clean water is a fundamental human right but millions struggle for it daily. Herein, we demonstrate a new piezo-photocatalyst with immense structural diversity for universal wastewater decontamination. Single-crystalline Bi4TaO8Cl nanoplates with exposed piezoelectric facets exhibit visible-light response, piezoelectric behavior with coercive voltages of ±5 V yielding 0.35% crystal deformation, and pressure-induced band-bending of >2.5 eV. Using five common contaminants of textile and pharmaceutical industries, we show that the nanoplates can mineralize them in all piezocatalytic, photocatalytic, and piezo-photocatalytic approaches with efficiencies higher than most catalysts developed for just one contaminant. Their efficiencies for feedstocks differing over 2 orders of magnitude in concentrations, the highest to date, are also demonstrated to simulate real-life situations. These extensive studies established that combining piezocatalytic and photocatalytic approaches can lead to a tremendous synergy exceeding >45%. The origin of synergy has been illustrated for the first time using band-bending models and improved charge transfer from valence and conduction band electronic surfaces. We further quantified synergy across reactants, concentrations, and ultrasonic frequency and power to demonstrate their versatility and unpredictability. Finally, seven parameters that contribute to synergy but create unpredictability have been identified for the rational design of piezo-photocatalysts for wastewater treatment.

6.
ACS Appl Mater Interfaces ; 14(22): 25220-25231, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35613366

ABSTRACT

Insights into developing innovative routes for the stabilization of photogenerated charge-separated states by suppressing charge recombination in photocatalysts is a topic of immense importance. Herein, we report the synthesis of a metal-organic framework (MOF)-based composite where CdS nanoparticles (NPs) are confined inside the nanosized pores of Zr4+-based MOF-808, namely, CdS@MOF-808. Anchoring l-cysteine into the nanospace of MOF-808 via postsynthetic ligand exchange allows the capture of Cd2+ ions from their aqueous solution, which are further utilized for in situ growth of CdS NPs inside the nanosized MOF pores. The formation of CdS@MOF-808 opens up a possibility for visible-light photocatalysis as CdS NPs (1-2 nm) are a well-studied semiconductor system with a band gap of ∼2.6 eV. The confinement of the CdS NPs inside the MOF pores, close to the Zr4+ cluster, opens up a shorter electron transfer route from CdS to the catalytic Zr4+ cluster and shows a high rate of H2 evolution (10.41 mmol g-1 h-1) from water with a loading of 3.56 wt % CdS. In contrast, a similar composite in which CdS NPs are stabilized on the external surface of MOF-808 reveals poor activity (0.15 mmol g-1 h-1). CdS NPs stabilized on the MOF-808 surface show slower and inefficient electron transfer kinetics compared to CdS stabilized inside the nanospace of the MOF, as realized by the transient absorption measurements. Therefore, this work unveils the critical role of stabilizing the photosensitizer NPs in close proximity of the catalytic sites in MOF systems towards developing highly efficient H2 evolution photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL