Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Lipid Res ; 65(8): 100595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39019343

ABSTRACT

Liver injury is closely related to poor outcomes in sepsis patients. Current studies indicate that sepsis is accompanied by metabolic disorders, especially those related to lipid metabolism. It is highly important to explore the mechanism of abnormal liver lipid metabolism during sepsis. As a key regulator of glucose and lipid metabolism, angiopoietin-like 8 (ANGPTL8) is involved in the regulation of multiple chronic metabolic diseases. In the present study, severe liver lipid deposition and lipid peroxidation were observed in the early stages of lipopolysaccharide (LPS) induced liver injury. LPS promotes the expression of ANGPTL8 both in vivo and in vitro. Knockout of Angptl8 reduced hepatic lipid accumulation and lipid peroxidation, improved fatty acid oxidation and liver function, and increased the survival rate of septic mice by activating the PGC1α/PPARα pathway. We also found that the expression of ANGPTL8 induced by LPS depends on TNF-α, and that inhibiting the TNF-α pathway reduces LPS-induced hepatic lipid deposition and lipid peroxidation. However, knocking out Angptl8 improved the survival rate of septic mice better than inhibiting the TNF-α pathway. Taken together, the results of our study suggest that ANGPTL8 functions as a novel cytokine in LPS-induced liver injury by suppressing the PGC1α/PPARα signaling pathway. Therefore, targeting ANGPTL8 to improve liver lipid metabolism represents an attractive strategy for the management of sepsis patients.


Subject(s)
Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins , Lipid Metabolism , Lipopolysaccharides , Animals , Mice , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/deficiency , Angiopoietin-like Proteins/genetics , PPAR alpha/metabolism , PPAR alpha/genetics , Male , Mice, Knockout , Peptide Hormones/metabolism , Liver/metabolism , Liver/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sepsis/metabolism , Sepsis/chemically induced , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Lipid Peroxidation/drug effects , Signal Transduction
2.
Phytother Res ; 37(12): 5803-5820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632389

ABSTRACT

T-lymphokine-activated killer cell-originated protein kinase (TOPK) is a serine-threonine kinase that is overexpressed in gastric cancer (GC) and promotes tumor progression. Polyphyllin VII (PPVII), a pennogenin isolated from the rhizomes of Paris polyphylla, shows anticancer effects. Here, we explored the antitumor activity and mechanism of PPVII in GC. Ferroptosis was detected by transmission electron microscope, malondialdehyde, and iron determination assays. Autophagy and its upstream signaling pathway were detected by Western blot, and gene alterations. The binding of PPVII and TOPK was examined through microscale thermophoresis and drug affinity responsive target stability assays. An in vivo mouse model was performed to evaluate the therapeutic of PPVII. PPVII inhibits GC by inducing autophagy-mediated ferroptosis. PPVII promotes the degradation of ferritin heavy chain 1, which is responsible for autophagy-mediated ferroptosis. PPVII activates the Unc-51-like autophagy-activating kinase 1 (ULK1) upstream of autophagy. PPVII inhibits the activity of TOPK, thereby weakening the inhibition of downstream ULK1. PPVII stabilizes the dimer of the inactive form of TOPK by direct binding. PPVII inhibits tumor growth without causing obvious toxicity in vivo. Collectively, this study suggests that PPVII is a potential agent for the treatment of GC by targeting TOPK to activate autophagy-mediated ferroptosis.


Subject(s)
Ferroptosis , Stomach Neoplasms , Humans , Animals , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Stomach Neoplasms/drug therapy , Killer Cells, Lymphokine-Activated/metabolism , Autophagy , Cell Line, Tumor
3.
J Biochem Mol Toxicol ; 33(2): e22244, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30381903

ABSTRACT

Fungus defensin is a kind of important natural peptide resource, such as plectasin from the soil fungus Pseudoplectania nigrella with potential application in the antimicrobial peptide lead drug discovery. Here, a fungus defensin named Bldesin with Kv1.3 channel and serine protease inhibitory activities was first explored. By GST-Bldesin fusion expression and enterokinase cleaving strategy, recombinant Bldesin was obtained successfully. Antimicrobial assays showed that Bldesin had potent activity against Gram-positive Staphylococcus aureus, but had no effect on Gram-negative Escherichia coli. Electrophysiological experiments showed that Bldesin had Kv1.3 channel inhibitory activity. Serine protease inhibitory associated experiments showed that Bldesin had unique chymotrypsin protease inhibitory, elastase protease inhibitory, and serine protease-associated coagulation inhibitory activities. To the best of our knowledge, Bldesin is the first functionally characterized pathogenic fungus defensin with Kv1.3 channel and chymotrypsin inhibitory activities and highlighted novel pharmacological effects of fungus-derived defensin peptides.


Subject(s)
Ascomycota/chemistry , Chymotrypsin/antagonists & inhibitors , Defensins/chemistry , Fungal Proteins/chemistry , Kv1.3 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/chemistry , Serpins/chemistry , Anti-Bacterial Agents/chemistry , Chymotrypsin/chemistry , HEK293 Cells , Humans , Kv1.3 Potassium Channel/chemistry
4.
Molecules ; 21(5)2016 Apr 30.
Article in English | MEDLINE | ID: mdl-27144550

ABSTRACT

Resistance to chemotherapy is a major challenge to improving overall survival in Acute Myeloid Leukemia (AML). Therefore, the development of innovative therapies and the identification of more novel agents for AML are urgently needed. Celastrol, a compound extracted from the Chinese herb Tripterygium wilfordii Hook, exerts anticancer activity. We investigated the effect of celastrol in the t(8;21) AML cell lines Kasumi-1 and SKNO-1. We demonstrated that inhibition of cell proliferation activated caspases and disrupted mitochondrial function. In addition, we found that celastrol downregulated the AML1-ETO fusion protein, therefore downregulating C-KIT kinases and inhibiting AKT, STAT3 and Erk1/2. These findings provide clear evidence that celastrol might provide clinical benefits to patients with t(8;21) leukemia.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Core Binding Factor Alpha 2 Subunit/biosynthesis , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins c-kit/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Transcription Factors/biosynthesis , Triterpenes/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 8 , Down-Regulation/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Pentacyclic Triterpenes , RUNX1 Translocation Partner 1 Protein , Translocation, Genetic
5.
Oncogenesis ; 12(1): 26, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188659

ABSTRACT

The interplay between hepatocellular carcinoma (HCC) cells and the tumor microenvironment is essential for hepatocarcinogenesis, but their contributions to HCC development are incompletely understood. We assessed the role of ANGPTL8, a protein secreted by HCC cells, in hepatocarcinogenesis and the mechanisms through which ANGPTL8 mediates crosstalk between HCC cells and tumor-associated macrophages. Immunohistochemical, Western blotting, RNA-Seq, and flow cytometry analyses of ANGPTL8 were performed. A series of in vitro and in vivo experiments were conducted to reveal the role of ANGPTL8 in the progression of HCC. ANGPTL8 expression was positively correlated with tumor malignancy in HCC, and high ANGPTL8 expression was associated with poor overall survival (OS) and disease-free survival (DFS). ANGPTL8 promoted HCC cell proliferation in vitro and in vivo, and ANGPTL8 KO inhibited the development of HCC in both DEN-induced and DEN-plus-CCL4-induced mouse HCC tumors. Mechanistically, the ANGPTL8-LILRB2/PIRB interaction promoted polarization of macrophages to the immunosuppressive M2 phenotype in macrophages and recruited immunosuppressive T cells. In hepatocytes, ANGPTL8-mediated stimulation of LILRB2/PIRB regulated the ROS/ERK pathway and upregulated autophagy, leading to the proliferation of HCC cells. Our data support the notion that ANGPTL8 has a dual role in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis.

6.
J Adv Res ; 47: 41-56, 2023 05.
Article in English | MEDLINE | ID: mdl-36031141

ABSTRACT

INTRODUCTION: High calorie intake is known to induce nonalcoholic fatty liver disease (NAFLD) by promoting chronic inflammation. However, the mechanisms are poorly understood. OBJECTIVES: This study examined the roles of ANGPTL8 in the regulation of NAFLD-associated liver fibrosis progression induced by high fat diet (HFD)-mediated inflammation. METHODS: The ANGPTL8 concentration was measured in serum samples from liver cancer and liver cirrhosis patients. ANGPTL8 knockout(KO) mice were used to induce disease models (HFD, HFHC and CCL4) followed by pathological staining, western blot and immunohistochemistry. Hydrodynamic injection of an adeno-associated virus 8 (AAV8) was used to establish a model for restoring ANGPTL8 expression specifically in ANGPTL8 KO mice livers. RNA-sequencing, protein array, Co-IP, etc. were used to study ANGPTL8's mechanisms in regulating liver fibrosis progression, and drug screening was used to identify an effective inhibitor of ANGPTL8 expression. RESULTS: ANGPTL8 level is associated with liver fibrogenesis in both cirrhosis and hepatocellular carcinoma patients. Mouse studies demonstrated that ANGPTL8 deficiency suppresses HFD-stimulated inflammatory activity, hepatic steatosis and liver fibrosis. The AAV-mediated restoration of liver ANGPTL8 expression indicated that liver-derived ANGPTL8 accelerates HFD-induced liver fibrosis. Liver-derived ANGPTL8, as a proinflammatory factor, activates HSCs (hepatic stellate cells) by interacting with the LILRB2 receptor to induce ERK signaling and increase the expression of genes that promote liver fibrosis. The FDA-approved anti-diabetic drug metformin, an ANGPTL8 inhibitor, inhibited HFD-induced liver fibrosis in vivo. CONCLUSIONS: Our data support that ANGPTL8 is a proinflammatory factor that accelerates NAFLD-associated liver fibrosis induced by HFD. The serum ANGPTL8 level may be a potential and specific diagnostic marker for liver fibrosis, and targeting ANGPTL8 holds great promise for developing innovative therapies to treat NAFLD-associated liver fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Diet, High-Fat/adverse effects , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Inflammation , Signal Transduction , Angiopoietin-Like Protein 8
7.
J Biomed Biotechnol ; 2010: 134764, 2010.
Article in English | MEDLINE | ID: mdl-20454583

ABSTRACT

Apoptosis plays an important role in embryonic development. PNAS-4 has been demonstrated to induce apoptosis in several cancer cells. In this study, we cloned Xenopus laevis PNAS-4 (xPNAS-4), which is homologous to the human PNAS-4 gene. Bioinformatics analysis for PNAS-4 indicated that xPNAS-4 shared 87.6% identity with human PNAS-4 and 85.5% with mouse PNAS-4. The phylogenetic tree of PNAS-4 protein was also summarized. An analysis of cellular localization using an EGFP-fused protein demonstrated that xPNAS-4 was localized in the perinuclear region of the cytoplasm. RT-PCR analysis revealed that xPNAS-4, as a maternally expressed gene, was present in all stages of early embryo development. Whole-mount in situ hybridization showed that xPNAS-4 was mainly expressed in ectoderm and mesoderm. Furthermore, microinjection of xPNAS-4 mRNA in vivo caused developmental defects manifesting as a small eye phenotype in the Xenopous embryos, and as a small eye or one-eye phenotype in developing zebrafish embryos. In addition, embryos microinjected with xPNAS-4 antisense morpholino oligonucleotides (MOs) exhibited a failure of head development and shortened axis.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Embryo, Nonmammalian/embryology , Embryonic Development/genetics , Xenopus Proteins/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics , Amino Acid Sequence , Animals , Apoptosis , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/metabolism , Cell Line , Computational Biology , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/metabolism , Eye Abnormalities/pathology , Gene Expression Regulation, Developmental , Humans , Microinjections , Molecular Sequence Data , Phylogeny , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Xenopus Proteins/chemistry , Xenopus Proteins/deficiency , Xenopus Proteins/metabolism
8.
Gene ; 749: 144707, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32344005

ABSTRACT

ANGPTL8 is a 22-KDa protein in the angiopoietin-like family. It is a liver-derived hormone that dynamically regulates glucose metabolism after refeeding. The mechanism of its regulation of glucose metabolism is unclear. We analyzed the effect of ANGPTL8 overexpression on glucose tolerance in the mouse liver by tail vein hydrodynamic transfection. The mechanism of ANGPTL8 improving insulin sensitivity was analyzed by the overexpression or knockdown of ANGPTL8 in mouse primary hepatocytes through in vitro synthetic mRNA and siRNA technology. The key site of ANGPTL8 protein regulating this signal pathway was screened by DNA point mutation and fragment truncation. The results showed that ANGPTL8 may directly regulate AKT protein phosphorylation in the insulin-mediated PI3K/AKT signaling pathway to improve insulin sensitivity. Ser94 and Thr98 are the key sites of ANGPTL8 protein in activating AKT protein phosphorylation. Present results indicate that ANGPTL8 may be a potential new agent to reduce postprandial blood glucose.


Subject(s)
Angiopoietin-like Proteins/metabolism , Insulin Resistance , Insulin/physiology , Proto-Oncogene Proteins c-akt/metabolism , Angiopoietin-Like Protein 8 , Animals , Forkhead Transcription Factors/metabolism , Glycogen Synthase Kinase 3/metabolism , Hep G2 Cells , Hepatocytes/enzymology , Hepatocytes/metabolism , Humans , Male , Mice, Inbred C57BL , Peptide Hormones/metabolism , Signal Transduction , Weight Gain
9.
Cell Prolif ; 53(11): e12924, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33078469

ABSTRACT

OBJECTIVES: Chemoresistance induced by cisplatin has become the major impediment to lung cancer chemotherapy. This study explored the potential chemoresistant genes and underlying mechanisms of chemoresistance in NSCLC. MATERIALS AND METHODS: Gene expression profile was integrated with DNA methylation profile to screen the candidate chemoresistant genes. Bioinformatic analysis and immunohistochemistry were used to analyse the association of a candidate gene with the characteristics of NSCLC patients. Recombinant lentivirus vectors were utilized to overexpress or silence candidate gene. Microarrays and immunoblotting were applied to explore the downstream targets of candidate gene. Xenograft models were established to validate the findings in vitro. RESULTS: An increased ZNF300 expression was detected in three chemoresistant cell lines of NSCLC, and the higher expression of ZNF300 was associated with poor OS of NSCLC patients. Cells with upregulated ZNF300 presented chemoresistance and enhanced aggressive growth compared to cells with downregulated ZNF300. ZNF300 inhibited MAPK/ERK pathways and activated CDK1 through inhibiting WEE1 and MYT1 and modulating MYC/AURKA/BORA/PLK1 axis. ICA and ATRA improved the anti-tumour effect of cisplatin on chemoresistant cells by inducing differentiation. CONCLUSIONS: ZNF300 promotes chemoresistance and aggressive behaviour of NSCLC through regulation of proliferation and differentiation by downregulating MAPK/ERK pathways and regulation of slow-cycling phenotype via activating CDK1 by inhibiting WEE1/MYT1 and modulating MYC/AURKA/BORA/PLK1 axis. Cisplatin, combined with ATRA and ICA, might be beneficial in chemoresistant cases of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm , Lung Neoplasms/genetics , Repressor Proteins/genetics , Transcriptome , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , DNA Methylation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice, Inbred BALB C , Middle Aged , Repressor Proteins/metabolism , Signal Transduction/drug effects , Transcriptome/drug effects
10.
Cell Mol Biol Lett ; 14(3): 363-76, 2009.
Article in English | MEDLINE | ID: mdl-19277478

ABSTRACT

Biot2 is a novel murine testis-specific gene that was first identified using the SEREX technique, and named by our laboratory. Using conventional RT-PCR and real time RT-PCR, we tested the expression profile of Biot2 in normal tissues and various murine tumor cell lines. Using RNA interference, we studied the biological function of Biot2 in tumorigenesis. We applied various types of growth assay, such as the in vitro MTT, colony-forming and BrdU incorporation assays, along with in vivo tumorigenicity assays, to reveal its inhibition of tumor cell proliferation. The results revealed that the Biot2 transcript was detected only and strongly in the testis tissues and abundantly in five types of murine cancer cell line. Treating B16 murine melanoma, LL/2 murine Lewis lung carcinoma and CT26 murine colorectal adenocarcinoma with special shRNA targeting Biot2 can significantly reduce the proliferation rate of these three tumor cell lines in vitro, as measured by the MTT, colony-forming and BrdU incorporation assays. The tumorigenicity of the CT26 cells transfected with special shRNA targeting Biot2 was also decreased distinctly in vivo compared with the control. It was therefore concluded that Biot2 plays a key role in tumorigenesis and could be a potential target for biotherapy.


Subject(s)
Antigens, Neoplasm/metabolism , Neoplasms, Experimental/therapy , RNA Interference , Testis/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/genetics , Carcinogenicity Tests , Cell Proliferation , Male , Mice , Molecular Sequence Data , Sequence Alignment , Transcription, Genetic , Tumor Cells, Cultured
11.
Biotechnol Appl Biochem ; 49(Pt 1): 17-23, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17523919

ABSTRACT

Human DRR1 (down-regulated in renal cell carcinoma 1) is widely expressed in normal tissues but dramatically reduced or even undetectable in a number of different cancer cell lines and primary tumour types. DRR1 from Homo sapiens was cloned into the pQE30 vector for fusion-protein expression with six histidine residues in Escherichia coli BL21(DE3). A soluble protein with a molecular mass of approx. 19 kDa on SDS/PAGE that matches the expected rDRR1 (recombinant DRR1) molecular mass (18.7 kDa) was obtained. The soluble and insoluble expression of recombinant protein DRR1 (rDRR1) was temperature-dependent. The expression rDRR1 was in soluble and insoluble forms at 37 degrees C, and approx. 80% of total rDRR1 was soluble at 37 degrees C, while rDRR1 was almost exclusively expressing in soluble form at 20 degrees C. The expressed rDRR1 at 20 degrees C was affinity-purified on Ni(2+)-charged resin under native conditions. The purified protein was further identified by ESI-MS (electrospray ionization MS). The purified recombinant protein rDRR1 was further used to raise anti-(human DRR1) polyclonal antibodies, which were suitable for detecting both the recombinant exogenous DRR1 and the endogenous DRR1 from tissues and cells by immunoblotting and immunohistochemistry. The purified rDRR1 and our prepared anti-(human DRR1) polyclonal antibodies may provide useful tools for future biological function studies on DRR1.


Subject(s)
Antibodies , Escherichia coli , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Amino Acid Sequence , Animals , CHO Cells , Cell Line , Chromatography, Affinity , Cloning, Molecular , Cricetinae , Cricetulus , Genes, Tumor Suppressor , Humans , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Solubility , Spectrometry, Mass, Electrospray Ionization
12.
Beilstein J Org Chem ; 4: 49, 2008.
Article in English | MEDLINE | ID: mdl-19190737

ABSTRACT

The aza-Wittig reactions of iminophosphorane 3 with aromatic isocyanates generated carbodiimides 4, which were reacted with alkylamines under mild conditions to give a series of 2-(alkylamino)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-ones 6 and 8 in satisfactory yield. Their structures were confirmed by (1)H NMR, EI-MS, IR and elementary analysis, and compound 8c was further analyzed by single-crystal X-ray diffraction. The preliminary bioassays indicated that these compounds showed excellent fungicidal activities against six kinds of fungi.

13.
Oncotarget ; 9(15): 12351-12364, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29552316

ABSTRACT

IL-6 is critical for tumorigenesis. However, previous studies on the association of IL-6 promoter polymorphisms with predisposition to different cancer types are somewhat contradictory. Therefore, we performed this meta-analysis regarding the relationship between IL-6 promoter single nucleotide polymorphisms and cancer susceptibility and prognosis. Up to April 2017, 97 original publications were identified covering three IL-6 promoter SNPs. Our results showed statistically significant association between IL-6 promoter and cancer risk and prognosis. Subgroup analysis indicated that rs1800795 was significantly associated with increased risk of cervical cancer, colorectal cancer, breast cancer, prostate cancer, lung cancer, glioma, non-Hodgkin's lymphoma and Hodgkin's lymphoma but not gastric cancer and multiple myeloma. Furthermore, rs1800796 was significantly associated with increased risk of lung cancer, prostate cancer and colorectal cancer but not gastric cancer. Additionally, rs1800797 was significantly association with breast cancer, non-Hodgkin's lymphoma, B-cell lymphoma and diffuse large B-cell lymphoma but not gastric cancer. Simultaneously, rs1800795 and rs1800796 were associated with a significantly higher risk of cancer in Asia and Caucasian, rs1800797 was associated with a significantly risk of cancer in Caucasian but not in Asia. Furthermore, IL-6 promoter polymorphisms were significantly associated with the prognosis of cancer. Considering these promising results, IL-6 promoter including rs1800795, rs1800796 and rs1800797 may be a tumor marker for cancer therapy.

14.
Toxicon ; 152: 9-15, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30012473

ABSTRACT

The Kv1.3 channel plays potential roles in immune, inflammation and coagulation system. Many studies showed that Kv1.3 channel inhibitors have immunosuppressive and anti-inflammatory activities, but no Kv1.3 channel inhibitors have been found to have anticoagulation activities. Here, based on our previous work about Kv1.3 channel toxin peptide inhibitors, we first attempt to test anticoagulation activities of four known venom-derived Kv1.3 channel inhibitors with different structural folds: BmKTX with CSα/ß structural fold, OmTx3 with CSα/α structural fold, BF9 with Kuntz-type structural fold, and SjAPI-2 with Ascaris-type structural fold. Our results showed that BmKTX and OmTx3 have no activities towards both intrinsic and extrinsic coagulation pathway, SjAPI-2 just has weak activity towards intrinsic coagulation pathway, and BF9 has potent activity towards intrinsic coagulation pathway with no apparent effect on extrinsic coagulation pathway. Enzyme and inhibitor reaction kinetics experiments further showed that BF9 inhibited intrinsic coagulation pathway-associated coagulation factor XIa, but have no apparent effects on common coagulation pathway coagulation factor IIa. Structure-activity relationship showed that Gly14, Asn17, Ala18 and Ile20 of BF9 are main residues involved in the inhibiting effect on factor XIa. To the best of our knowledge, BF9 is the first anticoagulant with Kv1.3 channel inhibitory activity. Together, our present studies found the first dual functional peptides with Kv1.3 channel and coagulation factor XIa inhibitory activities, and provided a new molecular template for the lead drug discovery towards immune and thrombosis-associated human diseases.


Subject(s)
Anticoagulants/pharmacology , Bungarotoxins/pharmacology , Factor XIa/antagonists & inhibitors , Kv1.3 Potassium Channel/antagonists & inhibitors , Blood Coagulation/drug effects , Humans , Kinetics , Scorpion Venoms/pharmacology , Structure-Activity Relationship
15.
Food Chem Toxicol ; 119: 169-175, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29702135

ABSTRACT

Hepatocellular carcinoma (HCC) is the major incidence and one of the most life-threatening cancer. How to conquer HCC is a worldwide issue for patients. Zhiheshouwu (Polygoni multiflori Radix Praeparata) is a Chinese medicinal herb exhibiting both lowering lipid and inhibiting cancer cells. However, it remains a matter if its inhibiting cancer cells is related to its lowering lipid. In this study, we investigate the effects of Zhiheshouwu ethanolic extract (HSWE) on apoptosis and the underlying mechanisms in Bel-7402 cells. The results showed that HSWE inhibited the proliferation with an increased level of ALT and AST in Bel-7402 cells. The decreased mitochondrial membrane potential (ΔΨm) was observed in HSWE-treated Bel-7402 cells. The flow cytometry results showed that HSWE triggered apoptosis. Since mitochondrial injury is characterized as intrinsic apoptotic cell death, these data indicated that HSWE may induce intrinsic apoptosis in Bel-7402 cells. In addition, HSWE decreased the production of unsaturated fatty acids, and inhibited the mRNA and protein of SCD1 and its up-stream factor, sterol-regulatory element binding proteins 1 (SREBP1), a master transcriptional regulator of lipogenic gene. Taken together, these data suggest that HSWE induces an intrinsic apoptosis, and reduced unsaturated fatty acids by blocking SREBP1 in hepatocellular carcinoma cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Hepatocellular/metabolism , Drugs, Chinese Herbal/chemistry , Fatty Acids, Unsaturated/metabolism , Liver Neoplasms/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Cell Line, Tumor , Ethanol , Gene Expression Regulation, Neoplastic/drug effects , Humans , Metabolic Networks and Pathways , Plant Extracts , Signal Transduction
16.
Gene ; 641: 111-116, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29054764

ABSTRACT

Skeletal muscle serving as the major organ is responsible for energy expenditure and exercise endurance, which directly influence cardiometabolic risk factors. Transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the energy metabolism of adipocytes. However, the involvement of TRPM8 in the energy metabolism of skeletal muscle remains unexplored. Our data revealed that TRPM8 was expressed in cultured C2C12 myocytes. Menthol treatment increased uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) expression in C2C12 myotubes through TRPM8 activation. Moreover, dietary menthol upregulated the expression of UCP1 and PGC1α in skeletal muscle of mice. In addition, dietary menthol enhanced exercise endurance and reduced blood lactic acid and triglycerides through TRPM8 activation. It is concluded that dietary menthol improves energy metabolism and exercise endurance by increasing UCP1 and PGC1α in skeletal muscles, suggesting dietary menthol might be a novel therapeutic approach for cardiometabolic diseases management and prevention.


Subject(s)
Energy Metabolism/physiology , Menthol/pharmacology , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Physical Endurance/physiology , TRPM Cation Channels/metabolism , Uncoupling Protein 1/biosynthesis , Animals , Cell Line , Enzyme Activation , Lactic Acid/blood , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxygen Consumption/drug effects , Triglycerides/blood , Up-Regulation/drug effects
17.
Oncotarget ; 8(40): 67300-67314, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978034

ABSTRACT

Celastrol exhibits potential anti-inflammatory activity in a variety of inflammatory diseases, but the mechanism remains poorly understood. Activation of NLRP3 inflammasome is involved in multiple inflammatory diseases. Here, we show that celastrol abolishes the NLRP3 inflammasome activation, inhibits subsequent caspase-1 activation and IL-1ß secretion both in vitro and in vivo. Notably, interruption of ASC oligomerization and autophagy activation are involved in NLRP3 inflammasome inactivation by celastrol. Importantly, in vivo results indicate that celastrol attenuates NLRP3 inflammasome-dependent inflammation diseases via autophagy-related pathway. Our results thus reveal celastrol as an inhibitor of NLRP3 inflammasome, implying the potential for clinical use of celastrol in treatment of NLRP3 inflammasome-driven inflammatory diseases.

18.
J Biomed Mater Res B Appl Biomater ; 76(1): 93-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16041793

ABSTRACT

No satisfactory effects have been obtained with the use of synthetic blood vessels (diameter <6 mm) as substitutes for human small arteries or veins for the purpose of clinical vascular reconstruction. Therefore, blood vessels of human origin, for example, umbilical cord blood vessels, with their wide availability, still should be considered. However, little information on biomechanical properties of human umbilical cord blood vessels is available. The objective was to provide a theoretical basis for the clinical application of umbilical cord veins as optional material for small-caliber grafts. This was a nonrandomized, noncontrolled in vitro study. The experiment was conducted in the Laboratory of Medical Biomechanics, Yunyang Medical College. Umbilical cord veins of 20 normal fetuses of spontaneous labor were collected by the Department of Obstetrics and Gynecology, Taihe Hospital in Shiyan City, Hubei Province. The fetuses aged 37-40 weeks, and the parturients were 20-30 years old. Umbilical cord veins of the 20 fetuses were used and the placental ends were treated as proximal ends while the fetal ends as distal ends. The fetal ends were divided into three segments: proximal, middle, and distal segments. The relationship between pressure of umbilical cord veins segments and the diameters was measured on the biomechanical experiment stand for soft tissues, and then the elastic modulus was calculated. The materials were transversely extracted, refrigerated, and sliced up before HE staining. The geometrical morphology indexes were measured by a computer image analysis system (Leica-Q500IW). The main outcome measures were: incremental elastic modulus (E(inc)), pressure-strain elastic modulus (E(p)), volume elastic modulus (E(v)), diameter, and wall thickness of the veins. E(inc), E(p), and E(v) of umbilical cord veins of proximal, middle, and distal segments increased with the pressure elevated. The three kinds of elastic modulus of proximal segments (E(inc): 26.98 +/- 3.21, E(p): 16.58 +/- 2.12, E(v): 8.31 +/- 2.35) were all lower than those of distal segments (E(inc): 33.20 +/- 4.21, E(p): 119.45 +/- 2.87, E(v): 9.71 +/- 1.32) (F = 95.74-126.52, p < 0.05), and a tendency to increase was shown from proximal segments to distal segments. Media thickness [(0.30 +/- 0.05)] mm, (0.24 +/- 0.03) mm] and the diameters [(3.07 +/- 0.12) mm, (2.30 +/- 0.13) mm] decreased gradually from proximal to distal segments (F = 12.76, p < 0.01). It is feasible to use umbilical cord veins as substitutes for the transplantation of small-caliber arteries in terms of basic biomechanical properties. On vascular grafting, different segments of umbilical cord veins should be chosen cautiously so that the biomechanical characteristics of umbilical cord vein grafts could be in accordance with those of host to increase the long-term patency rate of transplanted blood vessels.


Subject(s)
Umbilical Veins/physiology , Adult , Biomechanical Phenomena , Humans , Image Processing, Computer-Assisted , Umbilical Veins/embryology
19.
Anticancer Res ; 36(10): 5197-5204, 2016 10.
Article in English | MEDLINE | ID: mdl-27798880

ABSTRACT

BACKGROUND/AIM: FAM92A1-289 is recognized as one of the newly-discovered putative oncogenes. This study was performed to reveal its oncogenic functions in human cervical carcinoma cells. MATERIALS AND METHODS: The FAM92A1-289+ cell line was established with knock-in technique and selected by puromycin-resistance screening. Scratch assay, methylthiazol tetrazolium assay, colony forming assay and xenograft test were used to examine cell migration, cell proliferation, cell viability and tumor formation, respectively. RESULTS: FAM92A1-289+ cells showed higher migration rate (p<0.05), higher cell viability (p<0.01), higher colony formation and tumor growth. The FAM92A1-289 protein was pulled-down by antibodies against proliferating cell nuclear antigen (PCNA) in the co-immunoprecipitation assay. CONCLUSION: The up-regulated expression of FAM92A1-289 could facilitate cell migration, boost cell proliferation and promote colony formation in vitro and tumor growth in vivo. The interaction between FAM92A1-289 and PCNA was verified by co-immunoprecipitation. This study provided functional evidence for FAM92A1-289 to be developed as a therapeutic target for cancer treatment.


Subject(s)
Carcinoma/genetics , Proteins/genetics , Uterine Cervical Neoplasms/genetics , Animals , Carcinoma/metabolism , Carcinoma/pathology , Cell Movement , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic , Female , HeLa Cells , Humans , Mice, Nude , Proliferating Cell Nuclear Antigen/metabolism , Proteins/metabolism , Tumor Burden , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
20.
Oncol Rep ; 34(5): 2357-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26324182

ABSTRACT

p120-catenin (p120), an E-cadherin regulator, has been implicated as central to a series of genetic and epigenetic changes that ultimately lead to tumor progression and metastasis. Ras-related C3 botulinum toxin substrate 1 (Rac1)and p21-activated kinases (PAKs) are effectors of p120. In the present study, we examined the expression of p120, Rac1 and Pak1 using immunohistochemistry in human gastric cancer tissues. Then, we used the gastric cancer SGC7901 and AGS cell lines to explore the possible mechanism of p120, Rac1 and Pak1 in the progress of gastric cancer. Western blotting was used to detect the expression of p120, Rac1 and Pak1 in the two cell lines. Next, p120 was silenced using p120 siRNA or overexpression of p120 by transfection of the plasmid p120 1A into the two cell types, western blotting was used to investigate the expression changes of Rac1 and Pak1. Furthermore, the effects of p120 siRNA-mediated knockdown or overexpression on the proliferation and invasive ability of gastric cancer cells were investigated using wound healing test and Matrigel invasion assays. The results showed that p120 was downregulated in both poorly differentiated group and well differentiated human gastric cancer. However, Rac1 and Pak1 were upregulated in poorly differentiated tissues and remain low in well differentiated gastric cancer tissues. In the two gastric cancer cell lines, although the expression of Rac1 and Pak1 remained unchanged after the p120 knockdown, the expressions of Rac1 and Pak1 protein were decreased after p120 overexpression in both SGC7901 and AGS cells. Furthermore, knockdown of p120 promoted gastric cancer cell proliferation and invasion; overexpression of p120 reduced the proliferation and invasion of gastric cancer cells. In conclusion, based on our results, we speculate that p120 participates in the progress of gastric cancer through regulating Rac1 and Pak1, which provides a potential prevention and a promising therapeutical approach for the patients with gastric cancer.


Subject(s)
Catenins/physiology , Signal Transduction , Stomach Neoplasms/enzymology , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression , Humans , Neoplasm Invasiveness , Stomach Neoplasms/pathology , Delta Catenin
SELECTION OF CITATIONS
SEARCH DETAIL