Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biotechnol Bioeng ; 120(9): 2479-2493, 2023 09.
Article in English | MEDLINE | ID: mdl-37272445

ABSTRACT

Metabolic modeling has emerged as a key tool for the characterization of biopharmaceutical cell culture processes. Metabolic models have also been instrumental in identifying genetic engineering targets and developing feeding strategies that optimize the growth and productivity of Chinese hamster ovary (CHO) cells. Despite their success, metabolic models of CHO cells still present considerable challenges. Genome-scale metabolic models (GeMs) of CHO cells are very large (>6000 reactions) and are difficult to constrain to yield physiologically consistent flux distributions. The large scale of GeMs also makes the interpretation of their outputs difficult. To address these challenges, we have developed CHOmpact, a reduced metabolic network that encompasses 101 metabolites linked through 144 reactions. Our compact reaction network allows us to deploy robust, nonlinear optimization and ensure that the computed flux distributions are physiologically consistent. Furthermore, our CHOmpact model delivers enhanced interpretability of simulation results and has allowed us to identify the mechanisms governing shifts in the anaplerotic consumption of asparagine and glutamate as well as an important mechanism of ammonia detoxification within mitochondria. CHOmpact, thus, addresses key challenges of large-scale metabolic models and will serve as a platform to develop dynamic metabolic models for the control and optimization of biopharmaceutical cell culture processes.


Subject(s)
Genome , Metabolic Networks and Pathways , Cricetinae , Animals , Cricetulus , CHO Cells , Computer Simulation
2.
J Proteome Res ; 21(6): 1449-1466, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35506863

ABSTRACT

Traumatic spinal cord injury (SCI) results in disruption of tissue integrity and loss of function. We hypothesize that glycosylation has a role in determining the occurrence of regeneration and that biomaterial treatment can influence this glycosylation response. We investigated the glycosylation response to spinal cord transection in Xenopus laevis and rat. Transected rats received an aligned collagen hydrogel. The response compared regenerative success, regenerative failure, and treatment in an established nonregenerative mammalian system. In a healthy rat spinal cord, ultraperformance liquid chromatography (UPLC) N-glycoprofiling identified complex, hybrid, and oligomannose N-glycans. Following rat SCI, complex and outer-arm fucosylated glycans decreased while oligomannose and hybrid structures increased. Sialic acid was associated with microglia/macrophages following SCI. Treatment with aligned collagen hydrogel had a minimal effect on the glycosylation response. In Xenopus, lectin histochemistry revealed increased levels of N-acetyl-glucosamine (GlcNAc) in premetamorphic animals. The addition of GlcNAc is required for processing complex-type glycans and is a necessary foundation for additional branching. A large increase in sialic acid was observed in nonregenerative animals. This work suggests that glycosylation may influence regenerative success. In particular, loss of complex glycans in rat spinal cord may contribute to regeneration failure. Targeting the glycosylation response may be a promising strategy for future therapies.


Subject(s)
N-Acetylneuraminic Acid , Spinal Cord Injuries , Animals , Glycosylation , Hydrogels , Mammals , Rats , Spinal Cord , Xenopus laevis
3.
Glycobiology ; 32(7): 580-587, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35348694

ABSTRACT

The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative to standardize the reporting of glycoanalytical methods and to assess their reproducibility. To date, the MIRAGE Commission has published several reporting guidelines that describe what information should be provided for sample preparation methods, mass spectrometry methods, liquid chromatography analysis, exoglycosidase digestions, glycan microarray methods, and nuclear magnetic resonance methods. Here, we present the first version of reporting guidelines for glyco(proteo)mics analysis by capillary electrophoresis (CE) for standardized and high-quality reporting of experimental conditions in the scientific literature. The guidelines cover all aspects of a glyco(proteo)mics CE experiment including sample preparation, CE operation mode (CZE, CGE, CEC, MEKC, cIEF, cITP), instrument configuration, capillary separation conditions, detection, data analysis, and experimental descriptors. These guidelines are linked to other MIRAGE guidelines and are freely available through the project website https://www.beilstein-institut.de/en/projects/mirage/guidelines/#ce_analysis (doi:10.3762/mirage.7).


Subject(s)
Electrophoresis, Capillary , Glycomics , Chromatography, Liquid , Glycomics/methods , Mass Spectrometry/methods , Reproducibility of Results
4.
J Proteome Res ; 20(8): 3913-3924, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34191522

ABSTRACT

O-Glycosylation changes in misfolded proteins are of particular interest in understanding neurodegenerative conditions such as Parkinson's disease (PD) and incidental Lewy body disease (ILBD). This work outlines optimizations of a microwave-assisted nonreductive release to limit glycan degradation and employs this methodology to analyze O-glycosylation on the human striatum and substantia nigra tissue in PD, ILBD, and healthy controls, working alongside well-established reductive release approaches. A total of 70 O-glycans were identified, with ILBD presenting significantly decreased levels of mannose-core (p = 0.017) and glucuronylated structures (p = 0.039) in the striatum and PD presenting an increase in sialylation (p < 0.001) and a decrease in sulfation (p = 0.001). Significant increases in sialylation (p = 0.038) in PD were also observed in the substantia nigra. This is the first study to profile the whole nigrostriatal O-glycome in healthy, PD, and ILBD tissues, outlining disease biomarkers alongside benefits of employing orthogonal techniques for O-glycan analysis.


Subject(s)
Lewy Body Disease , Neurodegenerative Diseases , Parkinson Disease , Corpus Striatum , Humans , Substantia Nigra
5.
J Immunol ; 202(8): 2240-2253, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30796179

ABSTRACT

Alpha-1 antitrypsin (AAT) is an acute phase protein that possesses immune-regulatory and anti-inflammatory functions independent of antiprotease activity. AAT deficiency (AATD) is associated with early-onset emphysema and chronic obstructive pulmonary disease. Of interest are the AATD nonsense mutations (termed null or Q0), the majority of which arise from premature termination codons in the mRNA coding region. We have recently demonstrated that plasma from an AATD patient homozygous for the Null Bolton allele (Q0bolton ) contains AAT protein of truncated size. Although the potential to alleviate the phenotypic consequences of AATD by increasing levels of truncated protein holds therapeutic promise, protein functionality is key. The goal of this study was to evaluate the structural features and anti-inflammatory capacity of Q0bolton-AAT. A low-abundance, truncated AAT protein was confirmed in plasma of a Q0bolton-AATD patient and was secreted by patient-derived induced pluripotent stem cell-hepatic cells. Functional assays confirmed the ability of purified Q0bolton-AAT protein to bind neutrophil elastase and to inhibit protease activity. Q0bolton-AAT bound IL-8 and leukotriene B4, comparable to healthy control M-AAT, and significantly decreased leukotriene B4-induced neutrophil adhesion (p = 0.04). Through a mechanism involving increased mRNA stability (p = 0.007), ataluren treatment of HEK-293 significantly increased Q0bolton-AAT mRNA expression (p = 0.03) and Q0bolton-AAT truncated protein secretion (p = 0.04). Results support the rationale for treatment with pharmacological agents that augment levels of functional Q0bolton-AAT protein, thus offering a potential therapeutic option for AATD patients with rare mutations of similar theratype.


Subject(s)
Alleles , Codon, Nonsense , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Adult , Female , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/immunology , Liver/metabolism , Male , alpha 1-Antitrypsin/blood , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/immunology , alpha 1-Antitrypsin Deficiency/blood , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/immunology
6.
Mol Cell Proteomics ; 18(11): 2191-2206, 2019 11.
Article in English | MEDLINE | ID: mdl-31471495

ABSTRACT

The direct association of the genome, transcriptome, metabolome, lipidome and proteome with the serum glycome has revealed systems of interconnected cellular pathways. The exact roles of individual glycoproteomes in the context of disease have yet to be elucidated. In a move toward personalized medicine, it is now becoming critical to understand disease pathogenesis, and the traits, stages, phenotypes and molecular features that accompany it, as the disruption of a whole system. To this end, we have developed an innovative technology on an automated platform, "GlycoSeqCap," which combines N-glycosylation data from six glycoproteins using a single source of human serum. Specifically, we multiplexed and optimized a successive serial capture and glycoanalysis of six purified glycoproteins, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), transferrin (Trf), haptoglobin (Hpt) and alpha-1-antitrypsin (A1AT), from 50 µl of human serum. We provide the most comprehensive and in-depth glycan analysis of individual glycoproteins in a single source of human serum to date. To demonstrate the technological application in the context of a disease model, we performed a pilot study in an ovarian cancer cohort (n = 34) using discrimination and classification analyses to identify aberrant glycosylation. In our sample cohort, we exhibit improved selectivity and specificity over the currently used biomarker for ovarian cancer, CA125, for early stage ovarian cancer. This technology will establish a new state-of-the-art strategy for the characterization of individual serum glycoproteomes as a diagnostic and monitoring tool which represents a major step toward understanding the changes that take place during disease.


Subject(s)
Acute-Phase Proteins/analysis , Biomarkers, Tumor/blood , Glycoproteins/blood , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Ovarian Neoplasms/diagnosis , Case-Control Studies , Female , Glycomics , Glycosylation , Humans , Male , Neoplasm Metastasis , Ovarian Neoplasms/blood , Pilot Projects , Polysaccharides/analysis , Proteome/analysis
7.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Article in English | MEDLINE | ID: mdl-30242110

ABSTRACT

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Subject(s)
Arthritis, Rheumatoid/metabolism , Blood Proteins/analysis , Glycomics/methods , Pregnancy Complications/metabolism , Adult , Blood Proteins/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Female , Glycosylation , Humans , Pregnancy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Biochemistry ; 59(34): 3123-3128, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31580652

ABSTRACT

Sialic acids are sugars present in many animal glycoproteins and are of particular interest in biopharmaceuticals, where a lack of sialylation can reduce bioactivity. Here, we describe how α-2,6-sialyltransferase from Photobacterium damselae can be used to markedly increase the level of sialylation of CHO-produced α-1-antitrypsin. Detailed analysis of the sialylation products showed that in addition to the expected α-2,6-sialylation of galactose, a second disialyl galactose motif Neu5Ac-α2,3(Neu5Ac-α2,6)Gal was produced, which, to our knowledge, had never been detected on a mammalian glycoprotein. We exploited this disialyl galactose activity of the P. damselae in a multienzyme reaction to produce a highly sialylated α-1-antitrypsin. The influence of this unique disialylation on the in vitro activity of α-1-antitrypsin was studied, and a toolkit of mass spectrometry methods for identifying this new disialyl galactose motif in complex mixtures was developed.


Subject(s)
Galactose/metabolism , N-Acetylneuraminic Acid/metabolism , Photobacterium/enzymology , Recombinant Proteins/metabolism , Sialyltransferases/metabolism , alpha 1-Antitrypsin/metabolism
9.
Anal Chem ; 92(19): 12842-12851, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32815717

ABSTRACT

N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson's disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying "brain-type" glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders.


Subject(s)
Corpus Striatum/chemistry , Polysaccharides/metabolism , Substantia Nigra/chemistry , Animals , Chromatography, High Pressure Liquid , Corpus Striatum/metabolism , Mass Spectrometry , Polysaccharides/analysis , Rats , Substantia Nigra/metabolism
10.
Anal Chem ; 92(23): 15323-15335, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33166117

ABSTRACT

High-throughput glycan analysis has become an important part of biopharmaceutical production and quality control. However, it is still a significant challenge in the field of glycomics to easily deduce isomeric glycan structures, especially in a high-throughput manner. Ion mobility spectrometry (IMS) is an excellent tool for differentiating isomeric glycan structures. However, demonstrations of the utility of IMS in high-throughput workflows such as liquid chromatography-fluorescence-mass spectrometry (LC-FLR-MS) workflows have been limited with only a small amount of collision cross section (CCS) data available. In particular, IMS data of glycan fragments obtained in positive ion mode are limited in comparison to those obtained in negative ion mode despite positive ion mode being widely used for glycomics. Here, we describe IMS TWCCSN2 data obtained from a high-throughput LC-FLR-IMS-MS workflow in positive ion mode. We obtained IMS data from a selection of RapiFluor-MS (RFMS) labeled N-glycans and also glycopeptides. We describe how IMS is able to distinguish isomeric N-glycans and glycopeptides using both intact IMS and fragment-based IMS glycan sequencing experiments in positive ion mode, without significantly altering the high-throughput nature of the analysis. For the first time, we were able to successfully use IMS in positive ion mode to determine the branching of isomeric glycopeptides and RFMS labeled glycans. Further, we highlight that IMS glycan sequencing of fragments obtained from RFMS labeled glycans was similar to that of glycopeptides. Finally, we show that the IMS glycan sequencing approach can highlight shared structural features of nonisomeric glycans in a high-throughput LC-FLR-IMS-MS workflow.


Subject(s)
Glycopeptides/chemistry , Ion Mobility Spectrometry/methods , Polysaccharides/chemistry , Workflow
11.
Bioinformatics ; 35(4): 688-690, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30101321

ABSTRACT

SUMMARY: Many eukaryotic proteins are modified by N-glycans. Liquid chromatography (ultra-performance -UPLC and high-performance-HPLC) coupled with mass spectrometry (MS) is conventionally used to characterize N-glycan structures. Software can automatically assign glycan structures by matching their observed retention times and masses with standardized values in reference databases. However, more precise confirmation of N-glycan structures can be derived using exoglycosidases, enzymes that remove specific monosaccharides from glycans. Exoglycosidase removal of monosaccharides results in signature peak shifts, in both UPLC and MS1, yielding an effective way to verify N-glycan structure with high detail (down to the position and isomeric linkage of each monosaccharide). Because manual interpretation of exoglycosidase data is complex and time consuming, we developed GlycanAnalyzer, a web application that pattern matches N-glycan peak shifts following exoglycosidase digestion and automates structure assignments. GlycanAnalyzer significantly improves assignment accuracy over other auto-assignment methods on tests with a monoclonal antibody and four glycan standards (100% versus 82% for the next best software). By automating data interpretation, GlycanAnalyzer enables the easier use of exoglycosidases to precisely define N-glycan structure. AVAILABILITY AND IMPLEMENTATION: http://glycananalyzer.neb.com. Datasets available online. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Glycoside Hydrolases/chemistry , Polysaccharides/chemistry , Software , Chromatography, High Pressure Liquid , Internet , Mass Spectrometry
12.
Int J Mol Sci ; 21(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287410

ABSTRACT

The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients' serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies.


Subject(s)
Biomarkers , Metabolome , Metabolomics , Polysaccharides/metabolism , Prostatic Neoplasms/metabolism , Aged , Chromatography, High Pressure Liquid , Glycoproteins/metabolism , High-Throughput Screening Assays , Humans , Male , Metabolomics/methods , Middle Aged , Neoplasm Staging , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis
13.
Beilstein J Org Chem ; 16: 2087-2099, 2020.
Article in English | MEDLINE | ID: mdl-32952725

ABSTRACT

The accurate assessment of antibody glycosylation during bioprocessing requires the high-throughput generation of large amounts of glycomics data. This allows bioprocess engineers to identify critical process parameters that control the glycosylation critical quality attributes. The advances made in protocols for capillary electrophoresis-laser-induced fluorescence (CE-LIF) measurements of antibody N-glycans have increased the potential for generating large datasets of N-glycosylation values for assessment. With large cohorts of CE-LIF data, peak picking and peak area calculations still remain a problem for fast and accurate quantitation, despite the presence of internal and external standards to reduce misalignment for the qualitative analysis. The peak picking and area calculation problems are often due to fluctuations introduced by varying process conditions resulting in heterogeneous peak shapes. Additionally, peaks with co-eluting glycans can produce peaks of a non-Gaussian nature in some process conditions and not in others. Here, we describe an approach to quantitatively and qualitatively curate large cohort CE-LIF glycomics data. For glycan identification, a previously reported method based on internal triple standards is used. For determining the glycan relative quantities our method uses a clustering algorithm to 'divide and conquer' highly heterogeneous electropherograms into similar groups, making it easier to define peaks manually. Open-source software is then used to determine peak areas of the manually defined peaks. We successfully applied this semi-automated method to a dataset (containing 391 glycoprofiles) of monoclonal antibody biosimilars from a bioreactor optimization study. The key advantage of this computational approach is that all runs can be analyzed simultaneously with high accuracy in glycan identification and quantitation and there is no theoretical limit to the scale of this method.

14.
Circulation ; 137(23): 2497-2513, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29371215

ABSTRACT

BACKGROUND: Heart failure is a leading cause of mortality and morbidity, and the search for novel therapeutic approaches continues. In the monogenic disease mucopolysaccharidosis VI, loss-of-function mutations in arylsulfatase B lead to myocardial accumulation of chondroitin sulfate (CS) glycosaminoglycans, manifesting as myriad cardiac symptoms. Here, we studied changes in myocardial CS in nonmucopolysaccharidosis failing hearts and assessed its generic role in pathological cardiac remodeling. METHODS: Healthy and diseased human and rat left ventricles were subjected to histological and immunostaining methods to analyze glycosaminoglycan distribution. Glycosaminoglycans were extracted and analyzed for quantitative and compositional changes with Alcian blue assay and liquid chromatography-mass spectrometry. Expression changes in 20 CS-related genes were studied in 3 primary human cardiac cell types and THP-1-derived macrophages under each of 9 in vitro stimulatory conditions. In 2 rat models of pathological remodeling induced by transverse aortic constriction or isoprenaline infusion, recombinant human arylsulfatase B (rhASB), clinically used as enzyme replacement therapy in mucopolysaccharidosis VI, was administered intravenously for 7 or 5 weeks, respectively. Cardiac function, myocardial fibrosis, and inflammation were assessed by echocardiography and histology. CS-interacting molecules were assessed with surface plasmon resonance, and a mechanism of action was verified in vitro. RESULTS: Failing human hearts displayed significant perivascular and interstitial CS accumulation, particularly in regions of intense fibrosis. Relative composition of CS disaccharides remained unchanged. Transforming growth factor-ß induced CS upregulation in cardiac fibroblasts. CS accumulation was also observed in both the pressure-overload and the isoprenaline models of pathological remodeling in rats. Early treatment with rhASB in the transverse aortic constriction model and delayed treatment in the isoprenaline model proved rhASB to be effective at preventing cardiac deterioration and augmenting functional recovery. Functional improvement was accompanied by reduced myocardial inflammation and overall fibrosis. Tumor necrosis factor-α was identified as a direct binding partner of CS glycosaminoglycan chains, and rhASB reduced tumor necrosis factor-α-induced inflammatory gene activation in vitro in endothelial cells and macrophages. CONCLUSIONS: CS glycosaminoglycans accumulate during cardiac pathological remodeling and mediate myocardial inflammation and fibrosis. rhASB targets CS effectively as a novel therapeutic approach for the treatment of heart failure.


Subject(s)
Chondroitin Sulfates/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Myocardium/metabolism , Ventricular Remodeling , Animals , Cardiomyopathies/pathology , Cardiomyopathies/therapy , Fibrosis , Heart Failure/pathology , Heart Failure/therapy , Heart Ventricles/pathology , Humans , Mice , Myocardium/pathology , Rats
15.
Glycobiology ; 29(5): 349-354, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30778580

ABSTRACT

The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to design guidelines that improve the reporting and reproducibility of glycoanalytical methods. Previously, the MIRAGE Commission has published guidelines for describing sample preparation methods and the reporting of glycan array and mass spectrometry techniques and data collections. Here, we present the first version of guidelines that aim to improve the quality of the reporting of liquid chromatography (LC) glycan data in the scientific literature. These guidelines cover all aspects of instrument setup and modality of data handling and manipulation and is cross-linked with other MIRAGE recommendations. The most recent version of the MIRAGE-LC guidelines is freely available at the MIRAGE project website doi:10.3762/mirage.4.


Subject(s)
Glycomics , Polysaccharides/analysis , Chromatography, Liquid , Humans
16.
Anal Chem ; 91(11): 7236-7244, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31079452

ABSTRACT

The leading proteomic method for identifying N-glycosylated peptides is liquid chromatography coupled with tandem fragmentation mass spectrometry (LCMS/MS) followed by spectral matching of MS/MS fragment masses to a database of possible glycan and peptide combinations. Such database-dependent approaches come with challenges such as needing high-quality informative MS/MS spectra, ignoring unexpected glycan or peptide sequences, and making incorrect assignments because some glycan combinations are equivalent in mass to amino acids. To address these challenges, we present GlycopeptideGraphMS, a graph theoretical bioinformatic approach complementary to the database-dependent method. Using the AXL receptor tyrosine kinase (AXL) as a model glycoprotein with multiple N-glycosylation sites, we show that those LCMS features that could be grouped into graph networks on the basis of glycan mass and retention time differences were actually N-glycopeptides with the same peptide backbone but different N-glycan compositions. Conversely, unglycosylated peptides did not exhibit this grouping behavior. Furthermore, MS/MS sequencing of the glycan and peptide composition of just one N-glycopeptide in the graph was sufficient to identify the rest of the N-glycopeptides in the graph. By validating the identifications with exoglycosidase cocktails and MS/MS fragmentation, we determined the experimental false discovery rate of identifications to be 2.21%. GlycopeptideGraphMS detected more than 500 unique N-glycopeptides from AXL, triple the number found by a database search with Byonic software, and detected incorrect assignments due to a nonspecific protease cleavage. This method overcomes some limitations of the database approach and is a step closer to comprehensive automated glycoproteomics.


Subject(s)
Proto-Oncogene Proteins/analysis , Receptor Protein-Tyrosine Kinases/analysis , Software , Chromatography, Liquid , Databases, Protein , Humans , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tandem Mass Spectrometry , Time Factors , Axl Receptor Tyrosine Kinase
17.
Anal Chem ; 91(14): 9078-9085, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31179689

ABSTRACT

Glycan head-groups attached to glycosphingolipids (GSLs) found in the cell membrane bilayer can alter in response to external stimuli and disease, making them potential markers and/or targets for cellular disease states. To identify such markers, comprehensive analyses of glycan structures must be undertaken. Conventional analyses of fluorescently labeled glycans using hydrophilic interaction high-performance liquid chromatography (HILIC) coupled with mass spectrometry (MS) provides relative quantitation and has the ability to perform automated glycan assignments using glucose unit (GU) and mass matching. The use of ion mobility (IM) as an additional level of separation can aid the characterization of closely related or isomeric structures through the generation of glycan collision cross section (CCS) identifiers. Here, we present a workflow for the analysis of procainamide-labeled GSL glycans using HILIC-IM-MS and a new, automated glycan identification strategy whereby multiple glycan attributes are combined to increase accuracy in automated structural assignments. For glycan matching and identification, an experimental reference database of GSL glycans containing GU, mass, and CCS values for each glycan was created. To assess the accuracy of glycan assignments, a distance-based confidence metric was used. The assignment accuracy was significantly better compared to conventional HILIC-MS approaches (using mass and GU only). This workflow was applied to the study of two Triple Negative Breast Cancer (TNBC) cell lines and revealed potential GSL glycosylation signatures characteristic of different TNBC subtypes.


Subject(s)
Glycosphingolipids/chemistry , Polysaccharides/analysis , Bacterial Proteins/chemistry , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Glycoside Hydrolases/chemistry , Humans , Mass Spectrometry/methods , Rhodococcus/enzymology , Triple Negative Breast Neoplasms/classification
18.
Bioinformatics ; 34(18): 3231-3232, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29897488

ABSTRACT

Summary: GlycoStore is a curated chromatographic, electrophoretic and mass-spectrometry composition database of N-, O-, glycosphingolipid (GSL) glycans and free oligosaccharides associated with a range of glycoproteins, glycolipids and biotherapeutics. The database is built on publicly available experimental datasets from GlycoBase developed in the Oxford Glycobiology Institute and then the National Institute for Bioprocessing Research and Training (NIBRT). It has now been extended to include recently published and in-house data collections from the Bioprocessing Technology Institute (BTI) A*STAR, Macquarie University and Ludger Ltd. GlycoStore provides access to approximately 850 unique glycan structure entries supported by over 8500 retention positions determined by: (i) hydrophilic interaction chromatography (HILIC) ultra-high performance liquid chromatography (U/HPLC) and reversed phase (RP)-U/HPLC with fluorescent detection; (ii) porous graphitized carbon (PGC) chromatography in combination with ESI-MS/MS detection; and (iii) capillary electrophoresis with laser induced fluorescence detection (CE-LIF). GlycoStore enhances many features previously available in GlycoBase while addressing the limitations of the data collections and model of this popular resource. GlycoStore aims to support detailed glycan analysis by providing a resource that underpins current workflows. It will be regularly updated by expert annotation of published data and data obtained from the project partners. Availability and implementation: http://www.glycostore.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Databases, Chemical , Glycomics/methods , Oligosaccharides/chemistry , Polysaccharides/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Glycolipids , Glycoproteins , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Oligosaccharides/metabolism , Polysaccharides/metabolism , Tandem Mass Spectrometry
19.
J Inherit Metab Dis ; 42(3): 553-564, 2019 05.
Article in English | MEDLINE | ID: mdl-30746764

ABSTRACT

SLC35A2-CDG is caused by mutations in the X-linked SLC35A2 gene encoding the UDP-galactose transporter. SLC35A2 mutations lead to hypogalactosylation of N-glycans. SLC35A2-CDG is characterized by severe neurological symptoms and, in many patients, early-onset epileptic encephalopathy. In view of the diagnostic challenges, we studied the clinical, neuroradiological, and biochemical features of 15 patients (11 females and 4 males) with SLC35A2-CDG from various centers. We describe nine novel pathogenic variations in SLC35A2. All affected individuals presented with a global developmental delay, and hypotonia, while 70% were nonambulatory. Epilepsy was present in 80% of the patients, and in EEG hypsarrhythmia and findings consistent with epileptic encephalopathy were frequently seen. The most common brain MRI abnormality was cerebral atrophy with delayed myelination and multifocal inhomogeneous abnormal patchy white matter hyperintensities, which seemed to be nonprogressive. Thin corpus callosum was also common, and all the patients had a corpus callosum shorter than normal for their age. Variable dysmorphic features and growth deficiency were noted. Biochemically, normal mucin type O-glycosylation and lipid glycosylation were found, while transferrin mass spectrometry was found to be more specific in the identification of SLC35A2-CDG, as compared to routine screening tests. Although normal glycosylation studies together with clinical variability and genetic results complicate the diagnosis of SLC35A2-CDG, our data indicate that the combination of these three elements can support the pathogenicity of mutations in SLC35A2.


Subject(s)
Brain Diseases/pathology , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Monosaccharide Transport Proteins/genetics , Spasms, Infantile/pathology , Adolescent , Atrophy , Child , Child, Preschool , Female , Glycosylation , Humans , Infant , Internationality , Magnetic Resonance Imaging , Male , Mass Spectrometry , Mutation , Young Adult
20.
Mol Cell Proteomics ; 16(10): 1770-1788, 2017 10.
Article in English | MEDLINE | ID: mdl-28576848

ABSTRACT

Fc gamma receptors (FcγR) bind the Fc region of antibodies and therefore play a prominent role in antibody-dependent cell-based immune responses such as ADCC, CDC and ADCP. The immune effector cell activity is directly linked to a productive molecular engagement of FcγRs where both the protein and glycan moiety of antibody and receptor can affect the interaction and in the present study we focus on the role of the FcγR glycans in this interaction. We provide a complete description of the glycan composition of Chinese hamster ovary (CHO) expressed human Fcγ receptors RI (CD64), RIIaArg131/His131 (CD32a), RIIb (CD32b) and RIIIaPhe158/Val158 (CD16a) and analyze the role of the glycans in the binding mechanism with IgG. The interactions of the monoclonal antibody rituximab with each FcγR were characterized and we discuss the CHO-FcγRIIIaPhe158/Val158 and CHO-FcγRI interactions and compare them to the equivalent interactions with human (HEK293) and murine (NS0) produced receptors. Our results reveal clear differences in the binding profiles of rituximab, which we attribute in each case to the differences in host cell-dependent FcγR glycosylation. The glycan profiles of CHO expressed FcγRI and FcγRIIIaPhe158/Val158 were compared with the glycan profiles of the receptors expressed in NS0 and HEK293 cells and we show that the glycan type and abundance differs significantly between the receptors and that these glycan differences lead to the observed differences in the respective FcγR binding patterns with rituximab. Oligomannose structures are prevalent on FcγRI from each source and likely contribute to the high affinity rituximab interaction through a stabilization effect. On FcγRI and FcγRIIIa large and sialylated glycans have a negative impact on rituximab binding, likely through destabilization of the interaction. In conclusion, the data show that the IgG1-FcγR binding kinetics differ depending on the glycosylation of the FcγR and further support a stabilizing role of FcγR glycans in the antibody binding interaction.


Subject(s)
Polysaccharides/immunology , Receptors, IgG/immunology , Rituximab/immunology , Animals , CHO Cells/metabolism , Cell Line , Cricetulus/immunology , Glycosylation , HEK293 Cells , Humans , Immunity, Cellular , Kinetics , Mice , Polysaccharides/metabolism , Protein Binding , Receptors, IgG/metabolism , Rituximab/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL