Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Virol ; : e0070724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953655

ABSTRACT

Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.

2.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33410734

ABSTRACT

The complement alternative pathway (AP) is tightly regulated and changes in two important AP components, factor B (FB) and factor H (FH) are linked to severe dengue in humans. Here, a mouse model of dengue was investigated to define the changes in FB and FH and assess the utility of this model to study the role of the AP in severe dengue. Throughout the period of viremia in the AG129 IFN signalling-deficient mouse, an increase in FB and a decrease in FH was observed following dengue virus (DENV) infection, with the former only seen in a model of more severe disease associated with antibody-dependent enhancement (ADE). Terminal disease was associated with a decrease in FB and FH, with greater changes during ADE, and accompanied by increased C3 degradation consistent with complement activation. In silico analysis of NFκΒ, signal transducer and activator of transcription (STAT) and IFN-driven FB and FH promoter elements to reflect the likely impact of the lack of IFN-responses in AG129 mice, demonstrated that these elements differed markedly between human and mouse, notably with mouse FH lacking NFκΒ and key IFN-stimulated response elements (ISRE), and FB with many more NFκΒ and STAT-responsive elements than human FB. Thus, the AG129 mouse offers utility in demonstrating changes in FB and FH that, similar to humans, are associated with severe disease, but lack predicted important human-specific and IFN-dependent responses of FB and FH to DENV-infection that are likely to regulate the subtleties of the overall AP response during dengue disease in humans.


Subject(s)
Complement Factor B/metabolism , Complement Factor H/metabolism , Complement Pathway, Alternative , Dengue/immunology , Severe Dengue/immunology , Animals , Antibody-Dependent Enhancement , Complement Factor B/genetics , Complement Factor H/genetics , Dengue/virology , Dengue Virus/immunology , Dengue Virus/physiology , Disease Models, Animal , Humans , Interferons/metabolism , Mice , Promoter Regions, Genetic , Severe Dengue/virology , Viremia
3.
BMC Musculoskelet Disord ; 22(1): 271, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33711991

ABSTRACT

BACKGROUND: Alphaviruses, such as Ross River (RRV) and chikungunya virus (CHIKV), cause significant global morbidity, with outbreaks of crippling joint inflammation and pain, leaving patients incapacitated for months to years. With no available vaccine or specific therapeutic for any alphaviral disease, and a growing economic and public health burden, there is a serious need for the development of specific therapies. METHODS: This study evaluated the safety and efficacy of pentosan polysulfate sodium (PPS) in subjects with RRV-induced arthralgia in a double-blind, placebo-controlled trial. Twenty subjects were randomized 2:1 to subcutaneous PPS (2 mg/kg) or placebo (sodium chloride 0.9%) twice weekly for 6 weeks. Safety evaluation included physical examination, concomitant medications, and laboratory findings. Efficacy assessments included change from baseline in joint function (hand grip strength and RAPID3) and quality of life (SF-36) at Days 15, 29, 39 and 81 after treatment initiation. Inflammatory and cartilage degradation biomarkers were exploratory endpoints. RESULTS: PPS was well tolerated, with a similar proportion of subjects reporting at least one treatment-emergent adverse event (TEAE) in the treatment and placebo groups. Injection site reactions were the most common TEAE and occurred more frequently in the PPS group. Dominant hand grip strength and SF-36 scores improved with PPS at all time points assessed, with hand grip strength improvement of 6.99 kg (p = 0.0189) higher than placebo at Day 15. PPS showed significant improvements versus placebo in adjusted mean relative change from baseline for RAPID3 Pain (p = 0.0197) and Total (p = 0.0101) scores at Day 15. At the conclusion of the study overall joint symptoms, assessed by RAPID3, showed near remission in 61.5% of PPS subjects versus 14.3% of placebo subjects. Additionally, PPS treatment improved COMP, CTX-II, CCL1, CXCL12, CXCL16 and CCL17 biomarker levels versus placebo. CONCLUSIONS: Overall, the improvements in strength and joint symptoms warrant further evaluation of PPS as a specific treatment for RRV-induced and other forms of arthritis. TRIAL REGISTRATION: This trial is registered at the Australian New Zealand Clinical Trials Registry # ACTRN12617000893303 .


Subject(s)
Pentosan Sulfuric Polyester , Ross River virus , Arthralgia/chemically induced , Arthralgia/diagnosis , Arthralgia/drug therapy , Australia , Double-Blind Method , Hand Strength , Humans , Pentosan Sulfuric Polyester/adverse effects , Quality of Life , Treatment Outcome
5.
J Gen Virol ; 99(8): 953-969, 2018 08.
Article in English | MEDLINE | ID: mdl-29939125

ABSTRACT

Up to 75 % of emerging human diseases are zoonoses, spread from animals to humans. Although bacteria, fungi and parasites can be causative agents, the majority of zoonotic infections are caused by viral pathogens. During the past 20 years many factors have converged to cause a dramatic resurgence or emergence of zoonotic diseases. Some of these factors include demographics, social changes, urban sprawl, changes in agricultural practices and global climate changes. In the period between 2014-2017 zoonotic viruses including ebola virus (EBOV), chikungunya virus (CHIKV), dengue virus (DENV) and zika virus (ZIKV), caused prominent outbreaks resulting in significant public health and economic burdens, especially in developing areas where these diseases are most prevalent. When a viral pathogen invades a new human host, it is the innate immune system that serves as the first line of defence. Myeloid cells are especially important to help fight viral infections, including those of zoonotic origins. However, viruses such as EBOV, CHIKV, DENV and ZIKV have evolved mechanisms that allow circumvention of the host's innate immune response, avoiding eradication and leading to severe clinical disease. Herein, the importance of myeloid cells in host defence is discussed and the mechanisms by which these viruses exploit myeloid cells are highlighted. The insights provided in this review will be invaluable for future studies looking to identify potential therapeutic targets towards the treatment of these emerging diseases.


Subject(s)
Communicable Diseases, Emerging/immunology , Myeloid Cells/physiology , Virus Diseases/immunology , Zoonoses , Animals , Humans , Immunity, Innate
6.
J Infect Dis ; 215(10): 1536-1545, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28379462

ABSTRACT

Background: Human metapneumovirus (hMPV) infection is implicated in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Research into the pathogenesis of infection is restricted to animal models, and information about hMPV replication and inflammatory and immune responses in human disease is limited. Methods: Human primary bronchial epithelial cells (PBECs) from healthy and asthmatic subjects and those with COPD were infected with hMPV, with or without glucocorticosteroid (GCS) exposure. Viral replication, inflammatory and immune responses, and apoptosis were analyzed. We also determined whether adjuvant interferon (IFN) can blunt hMPV infection in vitro and in a murine model. Results: hMPV infected human PBECs and viral replication was enhanced in cells from patients with COPD. The virus induced gene expression of IFN-stimulated gene 56 (ISG56) and IFN-ß, as well as IFN-γ-inducible protein 10 (IP-10) and regulated on activation, normal T cell expressed and secreted (RANTES), and more so in cells from patients with COPD. GCS exposure enhanced hMPV replication despite increased IFN expression. Augmented virus replication associated with GCS was mediated by reduced apoptosis via induction of antiapoptotic genes. Adjuvant IFN treatment suppressed hMPV replication in PBECs and reduced hMPV viral titers and inflammation in vivo. Conclusions: hMPV infects human PBECs, eliciting innate and inflammatory responses. Replication is enhanced by GCS and adjuvant IFN is an effective treatment, restricting virus replication and proinflammatory consequences of hMPV infections.


Subject(s)
Glucocorticoids/pharmacology , Interferon-gamma/pharmacology , Metapneumovirus , Paramyxoviridae Infections/virology , Pulmonary Disease, Chronic Obstructive/virology , Animals , Apoptosis/drug effects , Asthma/virology , Bronchi/cytology , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/virology , Humans , Mice , Mice, Inbred BALB C , Models, Biological , Respiratory Mucosa/cytology , Virus Replication/drug effects
7.
Clin Sci (Lond) ; 131(14): 1713-1721, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28667069

ABSTRACT

Since its discovery in 2001, human metapneumovirus (hMPV) has been identified as an important cause of respiratory tract infection in young children, second only to the closely related respiratory syncytial virus (RSV). Clinical evidence suggests that hMPV is associated with acute exacerbations of asthma in both children and adults, and may play a role in initiating asthma development in children. Animal models have demonstrated that airway hyperresponsiveness (AHR) and inflammation are triggered following hMPV infection, and hMPV is able to persist in vivo by inhibiting innate immune responses and causing aberrant adaptive responses. In this review, we discuss the prevalence of hMPV infection in pediatric and adult populations and its potential role in asthma exacerbation. We also review recent advances made in animal models to determine immune responses following hMPV infection, and compare to what is known about RSV.


Subject(s)
Asthma/virology , Metapneumovirus , Paramyxoviridae Infections/complications , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus, Human , Acute Disease , Animals , Disease Models, Animal , Humans , Immunity, Innate , Paramyxoviridae Infections/immunology , Respiratory Syncytial Virus Infections/immunology
8.
J Gen Virol ; 97(5): 1094-1106, 2016 05.
Article in English | MEDLINE | ID: mdl-26813162

ABSTRACT

With an expanding geographical range and no specific treatments, human arthritogenic alphaviral disease poses a significant problem worldwide. Previous in vitro work with Ross River virus (RRV) demonstrated that alphaviral N-linked glycosylation contributes to type I IFN (IFN-αß) induction in myeloid dendritic cells. This study further evaluated the role of alphaviral N-linked glycans in vivo, assessing the effect of glycosylation on pathogenesis in a mouse model of RRV-induced disease and on viral infection and dissemination in a common mosquito vector, Aedes vigilax. A viral mutant lacking the E1-141 glycosylation site was attenuated for virus-induced disease, with reduced myositis and higher levels of IFN-γ induction at peak disease contributing to improved viral clearance, suggesting that glycosylation of the E1 glycoprotein plays a major role in the pathogenesis of RRV. Interestingly, RRV lacking E2-200 glycan had significantly reduced replication in the mosquito vector A. vigilax, whereas loss of either of the E1 or E2-262 glycans had little effect on the competence of the mosquito vector. Overall, these results indicate that glycosylation of the E1 and E2 glycoproteins of RRV provides important determinants of viral virulence and immunopathology in the mammalian host and replication in the mosquito vector.


Subject(s)
Alphavirus Infections/virology , Capsid Proteins/metabolism , Ross River virus/physiology , Ross River virus/pathogenicity , Viral Envelope Proteins/metabolism , Aedes/virology , Alphavirus Infections/transmission , Animals , Capsid Proteins/genetics , Cell Line , Gene Expression Regulation, Viral/physiology , Glycosylation , Insect Vectors/virology , Mice , Mutation , RNA, Viral , Ross River virus/genetics , Sheep/blood , Viral Envelope Proteins/genetics , Virulence , Virus Replication/genetics
9.
J Virol ; 89(3): 1564-78, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25410867

ABSTRACT

UNLABELLED: Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE: This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.


Subject(s)
Eosinophils/immunology , Lung/immunology , Lung/pathology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Animals , Female , Lung/virology , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Vaccines, Inactivated/immunology , Viral Load
10.
J Gen Virol ; 96(Pt 2): 221-238, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25351726

ABSTRACT

Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.


Subject(s)
Alphavirus Infections/pathology , Alphavirus/physiology , Disease Models, Animal , Host-Pathogen Interactions , Alphavirus/immunology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Animals , Humans , Mice
11.
J Virol ; 86(16): 8527-35, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22647692

ABSTRACT

In the context of viral infections, autophagy induction can be beneficial or inhibitory. Within the Paramyxoviridae family, only morbilliviruses have been investigated and are reported to induce autophagy. Here we show that morbilliviruses rapidly induce autophagy and require this induction for efficient cell-to-cell spread. Coexpression of both glycoproteins in cells expressing one of the cellular receptors was required for autophagy induction, and LC3 punctum formation, indicative of autophagy, was mainly observed in syncytia. A similar correlation between syncytium formation and autophagy induction was also observed for other paramyxovirus glycoproteins, suggesting that membrane fusion-mediated autophagy may be common among paramyxoviruses and possibly other enveloped viruses.


Subject(s)
Autophagy , Giant Cells/virology , Membrane Fusion , Morbillivirus/pathogenicity , Animals , Chlorocebus aethiops , Vero Cells
12.
J Virol ; 86(18): 9888-98, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22761364

ABSTRACT

Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/ß) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/ß receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/ß induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/ß responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome.


Subject(s)
Alphavirus Infections/immunology , Alphavirus Infections/prevention & control , Chikungunya virus/pathogenicity , Interferon Regulatory Factor-3/physiology , Interferon Regulatory Factor-7/physiology , Adaptor Proteins, Vesicular Transport/deficiency , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/physiology , Alphavirus Infections/pathology , Animals , Chikungunya Fever , Chikungunya virus/immunology , Chikungunya virus/physiology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferon Regulatory Factor-3/deficiency , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Interferon-alpha/biosynthesis , Interferon-alpha/pharmacology , Interferon-beta/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/physiology , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology , Shock, Hemorrhagic/immunology , Shock, Hemorrhagic/prevention & control , Virus Replication/drug effects
13.
Viruses ; 15(1)2022 12 31.
Article in English | MEDLINE | ID: mdl-36680176

ABSTRACT

Old world alphaviruses, such as Ross River virus (RRV), cause debilitating arthralgia during acute and chronic stages of the disease. RRV-induced cartilage degradation has been implicated as a cause of joint pain felt by RRV patients. Chondrocytes are a major cell type of cartilage and are involved in the production and maintenance of the cartilage matrix. It is thought that these cells may play a vital role in RRV disease pathogenesis. In this study, we used RNA-sequencing (RNA-Seq) to examine the transcriptomes of RRV-infected and bystander chondrocytes in the same environment. RRV containing green fluorescent protein (GFP) allowed for the separation of RRV-infected (GFP+) and bystander uninfected cells (GFP-). We found that whereas GFP+ and GFP- populations commonly presented similar gene expression profiles during infection, there were also unique signatures. For example, RIMS2 and FOXJ1 were unique to GFP+ cells, whilst Aim2 and CCL8 were only found in bystander chondrocytes. This indicates that careful selection of potential therapeutic targets is important to minimise adverse effects to the neighbouring uninfected cell populations. Our study serves as a resource to provide more information about the pathways and responses elicited by RRV in cells which are both infected and stimulated because of neighbouring infected cells.


Subject(s)
Alphavirus Infections , Alphavirus , Humans , Chondrocytes/metabolism , Alphavirus/genetics , Ross River virus/genetics , Ross River virus/metabolism
14.
Front Physiol ; 13: 947723, 2022.
Article in English | MEDLINE | ID: mdl-36213251

ABSTRACT

Introduction: Mutations and misfolding of membrane proteins are associated with various disorders, hence they make suitable targets in proteomic studies. However, extraction of membrane proteins is challenging due to their low abundance, stability, and susceptibility to protease degradation. Given the limitations in existing protocols for membrane protein extraction, the aim of this investigation was to develop a protocol for a high yield of membrane proteins for isolated Natural Killer (NK) cells. This will facilitate genetic analysis of membrane proteins known as transient receptor potential melastatin 3 (TRPM3) ion channels in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) research. Methods: Two protocols, internally identified as Protocol 1 and 2, were adapted and optimized for high yield protein extraction. Protocol 1 utilized ultrasonic and salt precipitation, while Protocol 2 implemented a detergent and chloroform/methanol approach. Protein concentrations were determined by the Pierce Bicinchoninic Acid (BCA) and the Bio-Rad DC (detergent compatible) protein assays according to manufacturer's recommendation. Using Protocol 2, protein samples were extracted from NK cells of n = 6 healthy controls (HC) and n = 4 ME/CFS patients. In silico tryptic digest and enhanced signature peptide (ESP) predictor were used to predict high-responding TRPM3 tryptic peptides. Trypsin in-gel digestion was performed on protein samples loaded on SDS-PAGE gels (excised at 150-200 kDa). A liquid chromatography-multiple reaction monitoring (LC-MRM) method was optimized and used to evaluate the detectability of TRPM3 n = 5 proteotypic peptides in extracted protein samples. Results: The detergent-based protocol protein yield was significantly higher (p < 0.05) compared with the ultrasonic-based protocol. The Pierce BCA protein assay showed more reproducibility and compatibility compared to the Bio-Rad DC protein assay. Two high-responding tryptic peptides (GANASAPDQLSLALAWNR and QAILFPNEEPSWK) for TRPM3 were detectable in n = 10 extracted protein samples from NK cells isolated from HC and ME/CFS patients. Conclusion: A method was optimized for high yield protein extraction from human NK cells and for the first time TRPM3 proteotypic peptides were detected using LC-MRM. This new method provides for future research to assess membrane protein structural and functional relationships, particularly to facilitate proteomic investigation of TRPM3 ion channel isoforms in NK cells in both health and disease states, such as ME/CFS.

15.
PLoS One ; 16(9): e0255125, 2021.
Article in English | MEDLINE | ID: mdl-34492036

ABSTRACT

Chikungunya virus (CHIKV) is an arthropod-borne virus that causes large outbreaks world-wide leaving millions of people with severe and debilitating arthritis. Interestingly, clinical presentation of CHIKV arthritides have many overlapping features with rheumatoid arthritis including cellular and cytokine pathways that lead to disease development and progression. Currently, there are no specific treatments or vaccines available to treat CHIKV infections therefore advocating the need for the development of novel therapeutic strategies to treat CHIKV rheumatic disease. Herein, we provide an in-depth analysis of an efficacious new treatment for CHIKV arthritis with a semi-synthetic sulphated polysaccharide, Pentosan Polysulfate Sodium (PPS). Mice treated with PPS showed significant functional improvement as measured by grip strength and a reduction in hind limb foot swelling. Histological analysis of the affected joint showed local inflammation was reduced as seen by a decreased number of infiltrating immune cells. Additionally, joint cartilage was protected as demonstrated by increased proteoglycan staining. Using a multiplex-immunoassay system, we also showed that at peak disease, PPS treatment led to a systemic reduction of the chemokines CXCL1, CCL2 (MCP-1), CCL7 (MCP-3) and CCL12 (MCP-5) which may be associated with the reduction in cellular infiltrates. Further characterisation of the local effect of PPS in its action to reduce joint and muscle inflammation was performed using NanoString™ technology. Results showed that PPS altered the local expression of key functional genes characterised for their involvement in growth factor signalling and lymphocyte activation. Overall, this study shows that PPS is a promising treatment for alphaviral arthritis by reducing inflammation and protecting joint integrity.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Pentosan Sulfuric Polyester/pharmacology , Animals , Anticoagulants/pharmacology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/isolation & purification , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL
16.
Vector Borne Zoonotic Dis ; 21(1): 50-58, 2021 01.
Article in English | MEDLINE | ID: mdl-32996845

ABSTRACT

Ross River virus (RRV) is a mosquito-borne zoonotic arbovirus associated with high public health and economic burdens across Australia, but particularly in South East Queensland (SEQ). Despite this high burden, humans are considered incidental hosts. Transmission of RRV is maintained among mosquitoes and many nonhuman vertebrate reservoir hosts, although the relative contributions of each of these hosts are unclear. To clarify the importance of a range of vertebrates in RRV transmission in SEQ, a total of 595 serum samples from 31 species were examined for RRV exposure using a gold-standard plaque reduction neutralization test. Data were analyzed statistically using generalized linear models and a coefficient inference tree, and spatially. RRV exposure was highly variable between and within species groups. Critically, species group ("placental mammal," "marsupial," and "bird"), which has previously been used as a proxy for reservoir hosts, was a poor correlate for exposure. Instead, we found that generalized "diet" and greater "body mass" were most strongly correlated with seropositivity. We also identified significant differences in seropositivity between the two major possum species (ringtail possums and brushtail possums), which are ecologically and taxonomically different. Finally, we identified distinct hotspots and coldspots of seropositivity in nonhuman vertebrates, which correlated with human notification data. This is the largest diversity of species tested for RRV in a single study to date. The analysis methods within this study provide a framework for analyzing serological data in combination with species traits for other zoonotic disease, but more specifically for RRV highlight areas to target further public health research and surveillance effort.


Subject(s)
Alphavirus Infections/veterinary , Ross River virus/isolation & purification , Zoonoses/epidemiology , Alphavirus Infections/blood , Alphavirus Infections/epidemiology , Animals , Birds/virology , Body Weight , Chiroptera/virology , Diet , Horse Diseases/virology , Horses , Marsupialia/virology , Queensland/epidemiology , Seroepidemiologic Studies , Zoonoses/virology
17.
J Gen Virol ; 91(Pt 4): 980-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20016033

ABSTRACT

For most virus infections of the central nervous system (CNS), immune-mediated damage, the route of inoculation and death of infected cells all contribute to the pathology observed. To investigate the role of these factors in early canine distemper neuropathogenesis, we infected ferrets either intranasally or intraperitoneally with the neurovirulent canine distemper virus strain Snyder Hill. Regardless of the route of inoculation, the virus primarily targeted the olfactory bulb, brainstem, hippocampus and cerebellum, whereas only occasional foci were detected in the cortex. The infection led to widespread neuronal loss, which correlated with the clinical signs observed. Increased numbers of activated microglia, reactive gliosis and different pro-inflammatory cytokines were detected in the infected areas, suggesting that the presence and ultimate death of infected cells at early times after infection trigger strong local immune activation, despite the observed systemic immunosuppression.


Subject(s)
Distemper/pathology , Encephalitis, Viral/veterinary , Neurons/pathology , Acute Disease , Amino Acid Sequence , Animals , Base Sequence , Blood-Brain Barrier , Brain/immunology , Cytokines/analysis , Distemper/immunology , Distemper Virus, Canine/pathogenicity , Dogs , Encephalitis, Viral/immunology , Encephalitis, Viral/pathology , Ferrets , Gliosis/pathology , Green Fluorescent Proteins , Male , Molecular Sequence Data
18.
MethodsX ; 7: 101156, 2020.
Article in English | MEDLINE | ID: mdl-33344178

ABSTRACT

Over the last decade, an arbovirus surveillance system based on the preservation of nucleic acids (RNA/DNA) has been developed using Flinders Technology Associates (FTAⓇ) cards. Soaked in honey, FTAⓇ cards are applied in the field to detect arboviruses expectorated during mosquito sugar feeding. This technique has been shown to be inexpensive and efficient, and the implementation of this system for detecting parasites could be of international importance. As Leishmania parasites are highly prevalent in developing countries, FTAⓇ cards may offer an alternative inexpensive tool to enhance field surveillance activities for leishmaniasis. The simple approach of applying the cards in programs can substitute the necessary extensive training of personnel. In our hands, Leishmania macropodum DNA was shown to be stable on FTAⓇ cards during a 10-week time course, supporting their suitability for projects where direct access to laboratories is unobtainable and samples require storage prior to processing. This method may benefit programs in remote areas where accessibility to laboratory facilities are limited and samples need to be stored long-term.•This study found that FTA cards could be a valuable tool in the surveillance of leishmaniasis.•The method is based on the long-term preservation and detection of Leishmania DNA expectorated during insect sugar feeding.•The application of FTA cards can preclude the need to screen large samples and analysis of insect populations to provide evidence of disease transmission.

19.
Int J Parasitol Parasites Wildl ; 12: 192-198, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32637311

ABSTRACT

Up until recently, Australia was considered free of Leishmania due to the absence of phlebotomine sandfly species (Diptera: Phlebotominae) known to transmit Leishmania parasites in other parts of the world. The discovery of Leishmania (Mundinia) macropodum (Kinetoplastida: Trypanosomatidae) in Northern Australia sparked questions as to the existence of alternative vectors of Leishmania. This has added to the complexity of fully understanding the parasite's interaction with its vector, which is known to be very specific. Previous findings demonstrated L. macropodum infection beyond the blood meal stage in the day-biting midges Forcipomyia (Lasiohelea) Kieffer (Diptera: Ceratopogonidae) implicating them in the parasite's life cycle. Currently, there is no conclusive evidence demonstrating this suspected vector to transmit L. macropodum to a naïve host. Therefore, this research aimed to investigate the vector competency of day-biting midge F. (Lasiohelea) to transmit L. macropodum utilising a novel technology that preserves nucleic acids. Honey-soaked Flinders Technology Associates (FTA®) filter-paper cards were used to obtain saliva expectorated from biting midges while sugar-feeding. F. (Lasiohelea) were aspirated directly off macropods from a known Leishmania-transmission site and were kept in a waxed-paper container holding a honey-coated FTA® card for feeding. Insect identification and Taqman quantitative real-time PCR (qPCR) screening assays revealed L. macropodum DNA in F. (Lasiohelea) up to 7 days post field-collection, and in an unidentified biting midge, previously known as F. (Lasiohelea) sp.1. Moreover, 7/145 (4.83%) of FTA® cards were confirmed positive with L. macropodum DNA after exposure to field-collected F. (Lasiohelea). Additionally, FTA® cards were found to be a valuable surveillance tool, given the ease of use in the field and laboratory. Overall, our findings support previous reports on L. macropodum transmission by an alternative vector to phlebotomine sandflies. Further studies identifying and isolating infective L. macropodum promastigotes is necessary to resolve questions on the L. macropodum vector.

20.
Viruses ; 12(6)2020 06 06.
Article in English | MEDLINE | ID: mdl-32517260

ABSTRACT

The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.


Subject(s)
Virology/organization & administration , Australia , Awards and Prizes , Group Processes , Societies, Scientific
SELECTION OF CITATIONS
SEARCH DETAIL