Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nature ; 619(7968): 160-166, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37258666

ABSTRACT

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Animals , Mice , Body Weight , Enzyme Activation , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nucleotides/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Cell Division/drug effects , Substrate Specificity
2.
J Pharmacol Exp Ther ; 352(3): 579-89, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25576074

ABSTRACT

Polo-like kinase 1 (Plk1), a member of the Polo-like kinase family of serine/threonine kinases, is a key regulator of multiple steps in mitosis. Here we report on the pharmacological profile of volasertib, a potent and selective Plk inhibitor, in multiple preclinical models of acute myeloid leukemia (AML) including established cell lines, bone marrow samples from AML patients in short-term culture, and subcutaneous as well as disseminated in vivo models in immune-deficient mice. Our results indicate that volasertib is highly efficacious as a single agent and in combination with established and emerging AML drugs, including the antimetabolite cytarabine, hypomethylating agents (decitabine, azacitidine), and quizartinib, a signal transduction inhibitor targeting FLT3. Collectively, these preclinical data support the use of volasertib as a new therapeutic approach for the treatment of AML patients, and provide a foundation for combination approaches that may further improve and prolong clinical responses.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pteridines/therapeutic use , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , HeLa Cells , Humans , Mice , Mice, Nude , Mice, SCID , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Pteridines/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays/methods , Polo-Like Kinase 1
3.
Neuro Oncol ; 25(5): 913-926, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36521007

ABSTRACT

BACKGROUND: The tumor suppressor TP53 (p53) is frequently mutated, and its downstream effectors inactivated in many cancers, including glioblastoma (GBM). In tumors with wild-type status, p53 function is frequently attenuated by alternate mechanisms including amplification and overexpression of its key negative regulator, MDM2. We investigated the efficacy of the MDM2 inhibitor, BI-907828, in GBM patient-derived brain tumor stem cells (BTSCs) with different amplification statuses of MDM2, in vitro and in orthotopic xenograft models. METHODS: In vitro growth inhibition and on-target efficacy of BI-907828 were assessed by cell viability, co-immunoprecipitation assays, and western blotting. In vivo efficacy of BI-907828 treatments was assessed with qPCR, immunohistochemistry, and in intracranial xenograft models. RESULTS: BI-907828 decreases viability and induces cell death at picomolar concentrations in both MDM2 amplified and normal copy number TP53 wild-type BTSC lines. Restoration of p53 activity, including robust p21 expression and apoptosis induction, was observed in TP53 wild-type but not in TP53 mutant BTSCs. shRNA-mediated knock-down of TP53 in wild-type BTSCs abrogated the effect of BI-907828, confirming the specificity of the inhibitor. Pharmacokinetic-pharmacodynamic studies in orthotopic tumor-bearing severe combined immunodeficiency (SCID) mice demonstrated that a single 50 mg/kg p.o. dose of BI-907828 resulted in strong activation of p53 target genes p21 and MIC1. Long-term weekly or bi-weekly treatment with BI-907828 in orthotopic BTSC xenograft models was well-tolerated and improved survival both as a single-agent and in combination with temozolomide, with dose-dependent efficacy observed in the MDM2 amplified model. CONCLUSIONS: BI-907828 provides a promising new therapeutic option for patients with TP53 wild-type primary brain tumors.


Subject(s)
Antineoplastic Agents , Brain Stem Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Heterografts , Apoptosis , Antineoplastic Agents/therapeutic use , Brain/pathology , Brain Stem Neoplasms/drug therapy , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Xenograft Model Antitumor Assays , Cell Proliferation , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism
4.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36300829

ABSTRACT

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Genes, ras , Mutation , Neoplasms/genetics , Cysteine
5.
Clin Cancer Res ; 15(9): 3094-102, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19383823

ABSTRACT

PURPOSE: Antimitotic chemotherapy remains a cornerstone of multimodality treatment for locally advanced and metastatic cancers. To identify novel mitosis-specific agents with higher selectivity than approved tubulin-binding agents (taxanes, Vinca alkaloids), we have generated inhibitors of Polo-like kinase 1, a target that functions predominantly in mitosis. EXPERIMENTAL DESIGN: The first compound in this series, suitable for i.v. administration, has entered clinical development. To fully explore the potential of Polo-like kinase 1 inhibition in oncology, we have profiled additional compounds and now describe a novel clinical candidate. RESULTS: BI 6727 is a highly potent (enzyme IC(50) = 0.87 nmol/L, EC(50) = 11-37 nmol/L on a panel of cancer cell lines) and selective dihydropteridinone with distinct properties. First, BI 6727 has a pharmacokinetic profile favoring sustained exposure of tumor tissues with a high volume of distribution and a long terminal half-life in mice (V(ss) = 7.6 L/kg, t(1/2) = 46 h) and rats (V(ss) = 22 L/kg, t(1/2) = 54 h). Second, BI 6727 has physicochemical and pharmacokinetic properties that allow in vivo testing of i.v. as well as oral formulations, adding flexibility to dosing schedules. Finally, BI 6727 shows marked antitumor activity in multiple cancer models, including a model of taxane-resistant colorectal cancer. With oral and i.v. routes of administration, the total weekly dose of BI 6727 is most relevant for efficacy, supporting the use of a variety of well-tolerated dosing schedules. CONCLUSION: These findings warrant further investigation of BI 6727 as a tailored antimitotic agent; clinical studies have been initiated.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Cell Cycle Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/pharmacology , Pteridines/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Female , Fluorescent Antibody Technique , Forkhead Transcription Factors/physiology , Humans , Immunoenzyme Techniques , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Protein Conformation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/chemistry , Rats , Rats, Wistar , Tissue Distribution , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
6.
ChemMedChem ; 14(1): 88-93, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30458062

ABSTRACT

Mouse double minute 2 (MDM2) is a main and direct inhibitor of the crucial tumor suppressor p53. Reports from initial clinical trials showed that blocking this interaction with a small-molecule inhibitor can have great value in the treatment of cancer for patients with p53 wild-type tumors; however, it also revealed dose-limiting hematological toxicities and drug-induced resistance as main issues. To overcome the former, an inhibitor with superior potency and pharmacokinetic properties to ultimately achieve full efficacy with less-frequent dosing schedules is required. Toward this aim, we optimized our recently reported spiro-oxindole inhibitors by focusing on the crucial interaction with the amino acid side chain of His96MDM2 . The designed molecules required the targeted synthesis of structurally complex spiro[indole-3,2'-pyrrolo[2,3-c]pyrrole]-2,4'-diones for which we developed an unprecedented intramolecular azomethine ylide cycloaddition and investigated the results by computational methods. One of the new compounds showed superior cellular potency over previously reported BI-0252. This finding is a significant step toward an inhibitor suitable to potentially mitigate hematological on-target adverse effects.


Subject(s)
Azo Compounds/pharmacology , Indoles/pharmacology , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Thiosemicarbazones/pharmacology , Animals , Azo Compounds/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Cyclization , Density Functional Theory , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mice , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
7.
Mol Cell Biol ; 25(5): 2000-13, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15713653

ABSTRACT

DR5 (also called TRAIL receptor 2 and KILLER) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (also called TRAIL and Apo2 ligand). DR5 is a transcriptional target of p53, and its overexpression induces cell death in vitro. However, the in vivo biology of DR5 has remained largely unexplored. To better understand the role of DR5 in development and in adult tissues, we have created a knockout mouse lacking DR5. This mouse is viable and develops normally with the exception of having an enlarged thymus. We show that DR5 is not expressed in developing embryos but is present in the decidua and chorion early in development. DR5-null mouse embryo fibroblasts expressing E1A are resistant to treatment with TRAIL, suggesting that DR5 may be the primary proapoptotic receptor for TRAIL in the mouse. When exposed to ionizing radiation, DR5-null tissues exhibit reduced amounts of apoptosis compared to wild-type thymus, spleen, Peyer's patches, and the white matter of the brain. In the ileum, colon, and stomach, DR5 deficiency was associated with a subtle phenotype of radiation-induced cell death. These results indicate that DR5 has a limited role during embryogenesis and early stages of development but plays an organ-specific role in the response to DNA-damaging stimuli.


Subject(s)
Apoptosis , Radiation, Ionizing , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/physiology , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins , Caspase 3 , Caspases/analysis , Caspases/metabolism , Chorion/metabolism , DNA Damage , Decidua/metabolism , Doxorubicin/pharmacology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression , Gene Targeting , Male , Membrane Glycoproteins/pharmacology , Membrane Glycoproteins/physiology , Mice , Mice, Knockout , Receptors, TNF-Related Apoptosis-Inducing Ligand , Sequence Deletion/genetics , Spleen/chemistry , Spleen/cytology , Spleen/radiation effects , TNF-Related Apoptosis-Inducing Ligand , Thymus Gland/chemistry , Thymus Gland/cytology , Thymus Gland/radiation effects , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/physiology
8.
Cancer Lett ; 421: 112-120, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29454094

ABSTRACT

Interactions between a new potent Bromodomain and extraterminal domain (BET) inhibitor BI 894999 and the polo-like kinase (PLK) inhibitor volasertib were studied in acute myeloid leukemia cell lines in vitro and in vivo. We provide data for the distinct mechanisms of action of these two compounds with a potential utility in AML based on gene expression, cell cycle profile and modulation of PD biomarkers such as MYC and HEXIM1. In contrast to BI 894999, volasertib treatment neither affects MYC nor HEXIM1 expression, but augments and prolongs the decrease of MYC expression caused by BI 894999 treatment. In vitro combination of both compounds leads to a decrease in S-Phase and to increased apoptosis. In vitro scheduling experiments guided in vivo experiments in disseminated AML mouse models. Co-administration of BI 894999 and volasertib dramatically reduces tumor burden accompanied by long-term survival of tumor-bearing mice and eradication of AML cells in mouse bone marrow. Together, these preclinical findings provide evidence for the strong synergistic effect of BI 894999 and volasertib, warranting future clinical studies in patients with AML to investigate this paradigm.


Subject(s)
Benzene Derivatives/pharmacology , Leukemia, Myeloid, Acute/pathology , Protein Kinase Inhibitors/pharmacology , Proteins/antagonists & inhibitors , Pteridines/pharmacology , Animals , Cell Line , Drug Synergism , Genes, myc , Humans , Leukemia, Myeloid, Acute/genetics , Mice
9.
Mol Cell Biol ; 22(6): 1919-25, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11865068

ABSTRACT

Activating transcription factor 1 (ATF1), CREB, and the cyclic AMP (cAMP) response element modulatory protein (CREM), which constitute a subfamily of the basic leucine zipper transcription factors, activate gene expression by binding as homo- or heterodimers to the cAMP response element in regulatory regions of target genes. To investigate the function of ATF1 in vivo, we inactivated the corresponding gene by homologous recombination. In contrast to CREB-deficient mice, which suffer from perinatal lethality, mice lacking ATF1 do not exhibit any discernible phenotypic abnormalities. Since ATF1 and CREB but not CREM are strongly coexpressed during early mouse development, we generated mice deficient for both CREB and ATF1. ATF1(-/-) CREB(-/-) embryos die before implantation due to developmental arrest. ATF1(+/-) CREB(-/-) embryos display a phenotype of embryonic lethality around embryonic day 9.5 due to massive apoptosis. These results indicate that CREB and ATF1 act in concert to mediate signals essential for maintaining cell viability during early embryonic development.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , DNA-Binding Proteins , Transcription Factors/metabolism , Activating Transcription Factor 1 , Animals , Apoptosis/genetics , Cell Count , Cell Differentiation/genetics , Cell Survival , Cyclic AMP Response Element-Binding Protein/genetics , Embryo Loss/genetics , Embryo Loss/pathology , Embryo, Mammalian/pathology , Gene Expression Regulation, Developmental , Genes, Lethal , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Knockout , Phenotype , Transcription Factors/deficiency , Transcription Factors/genetics
10.
Cell Rep ; 20(12): 2860-2875, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28930682

ABSTRACT

The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.


Subject(s)
Proteolysis , Proto-Oncogene Proteins c-bcl-6/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Models, Molecular , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Protein Domains , Proteolysis/drug effects , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Ubiquitination/drug effects
11.
J Med Chem ; 59(22): 10147-10162, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27775892

ABSTRACT

Scaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).


Subject(s)
Drug Discovery , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Administration, Oral , Dose-Response Relationship, Drug , Humans , Indoles/administration & dosage , Indoles/chemistry , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidinones/administration & dosage , Pyrrolidinones/chemistry , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
12.
Mol Cancer Ther ; 15(10): 2388-2398, 2016 10.
Article in English | MEDLINE | ID: mdl-27496137

ABSTRACT

Although the MAPK pathway is frequently deregulated in cancer, inhibitors targeting RAF or MEK have so far shown clinical activity only in BRAF- and NRAS-mutant melanoma. Improvements in efficacy may be possible by combining inhibition of mitogenic signal transduction with inhibition of cell-cycle progression. We have studied the preclinical pharmacology of BI 847325, an ATP-competitive dual inhibitor of MEK and Aurora kinases. Potent inhibition of MEK1/2 and Aurora A/B kinases by BI 847325 was demonstrated in enzymatic and cellular assays. Equipotent effects were observed in BRAF-mutant cells, whereas in KRAS-mutant cells, MEK inhibition required higher concentrations than Aurora kinase inhibition. Daily oral administration of BI 847325 at 10 mg/kg showed efficacy in both BRAF- and KRAS-mutant xenograft models. Biomarker analysis suggested that this effect was primarily due to inhibition of MEK in BRAF-mutant models but of Aurora kinase in KRAS-mutant models. Inhibition of both MEK and Aurora kinase in KRAS-mutant tumors was observed when BI 847325 was administered once weekly at 70 mg/kg. Our studies indicate that BI 847325 is effective in in vitro and in vivo models of cancers with BRAF and KRAS mutation. These preclinical data are discussed in the light of the results of a recently completed clinical phase I trial assessing safety, tolerability, pharmacokinetics, and efficacy of BI 847325 in patients with cancer. Mol Cancer Ther; 15(10); 2388-98. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Aurora Kinases/chemistry , Aurora Kinases/metabolism , Binding, Competitive , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Mice , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
Proc Natl Acad Sci U S A ; 100(3): 1203-8, 2003 Feb 04.
Article in English | MEDLINE | ID: mdl-12538858

ABSTRACT

The transcription factor nuclear factor-kappaB (NF-kappaB) is essential for immune and inflammatory responses. NF-kappaB essential modulator (NEMO) is a scaffolding component of the IkappaB kinase complex required for NF-kappaB activation in vitro. Because NF-kappaB activation is involved in B cell development and function, we set out to determine whether NEMO is required for these processes. NEMO(-/-) mice die very early during embryogenesis, and fetal livers from NEMO(-/-) embryos can not reconstitute either B or T lymphopoiesis in irradiated host mice. We therefore used NEMO(-/-) embryonic stem cells and the OP9 in vitro differentiation system to demonstrate that NEMO is not required for B cell development but plays an important role in B cell survival.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Protein Serine-Threonine Kinases/physiology , Animals , Antigens, CD19/biosynthesis , B7-1 Antigen/biosynthesis , Cell Differentiation , Cell Line , Cell Separation , Cell Survival , Coculture Techniques , Embryo, Mammalian/cytology , Flow Cytometry , I-kappa B Kinase , Immunoglobulin M/immunology , Mice , Stem Cells/cytology , Time Factors
14.
Eur J Immunol ; 34(7): 1961-71, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15214044

ABSTRACT

Recent generation of genetically modified Creb1 mutant mice has revealed an important role for CREB (cAMP responsive element binding protein) and the related proteins CREM (cAMP responsive element modulator) and ATF1 (activating transcription factor 1) in cell survival, in agreement with previous studies using overexpression of dominant-negative CREB (dnCREB). CREB and ATF1 are abundantly expressed in T cells and are rapidly activated by phosphorylation when T cells are stimulated through the T cell antigen receptor. We show that T cell-specific loss of CREB in mice, in combination with the loss of ATF1, results in reduced thymic cellularity and delayed thymic recovery following sublethal irradiation but no changes in T cell development or activation. These data show that loss of CREB function has specific effects on thymic T lymphocyte proliferation and homeostasis in vivo.


Subject(s)
DNA-Binding Proteins , Thymus Gland/cytology , Thymus Gland/radiation effects , Transcription Factors/metabolism , Activating Transcription Factor 1 , Animals , Apoptosis/radiation effects , Cell Division/radiation effects , Cell Survival/radiation effects , Cyclic AMP Response Element-Binding Protein , Gene Deletion , Gene Expression Regulation , Homeostasis/radiation effects , Lymph Nodes/metabolism , Mice , Mice, Knockout , Recombination, Genetic/genetics , Spleen/metabolism , Stem Cells/cytology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/radiation effects , Thymus Gland/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL