Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161919

ABSTRACT

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Subject(s)
Biosensing Techniques , Cell Engineering , Cell- and Tissue-Based Therapy , Inflammation , T-Lymphocytes, Regulatory , Animals , CD28 Antigens/metabolism , Humans , Inflammation/therapy , Ligands , Lymphotoxin beta Receptor/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , Receptors, Tumor Necrosis Factor/metabolism , T-Lymphocytes, Regulatory/transplantation , Tumor Necrosis Factor-alpha
2.
J Exp Med ; 221(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226976

ABSTRACT

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Subject(s)
CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Humans , ErbB Receptors , Adipose Tissue , Cell Cycle
3.
Respiration ; 84(2): 108-16, 2012.
Article in English | MEDLINE | ID: mdl-22076427

ABSTRACT

BACKGROUND: Neutrophilic airway inflammation is one of the key features of chronic obstructive pulmonary disease (COPD). The chemokine receptors 1 (CXCR1) and 2 (CXCR2) are expressed in the bronchial mucosa during chronic inflammation and might be of importance for transepithelial migration of neutrophils. OBJECTIVES: This study addressed the role of bronchoepithelial CXCR1 and CXCR2 expression with respect to transepithelial migration of neutrophils. METHODS: Primary bronchial epithelial cells (PBECs) derived from COPD patients and healthy controls as well as transiently CXCR1- and CXCR2-transfected Calu-6 cells were used for transepithelial migration assays of neutrophils under various conditions. Epithelial CXCR1 and CXCR2 expression was verified by means of flow cytometry. RESULTS: Transepithelial migration of neutrophils was significantly increased following lipopolysaccharide pretreatment of epithelial cells. Transient transfection of CXCR1 and CXCR2 neither augmented the transepithelial migration of neutrophils, nor did the selective blockade of CXCR1 and CXCR2 have any significant effect on neutrophilic transepithelial migration. In addition, no differences were found in PBECs and neutrophils derived from healthy controls and COPD patients. CONCLUSIONS: The data of the present study do not support the hypothesis that bronchoepithelial expression of CXCR1 and/or CXCR2 facilitate transepithelial migration of neutrophils.


Subject(s)
Bronchioles/metabolism , Neutrophils/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8B/genetics , Respiratory Mucosa/metabolism , Transendothelial and Transepithelial Migration/genetics , Aged , Blood-Air Barrier/metabolism , Cells, Cultured , Female , Flow Cytometry , Gene Expression Regulation , Humans , Inflammation/metabolism , Leukocyte Count , Male , Middle Aged , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL