Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell ; 177(2): 326-338.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879787

ABSTRACT

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.


Subject(s)
Crossing Over, Genetic/genetics , Crossing Over, Genetic/physiology , Animals , Cell Nucleus , Chromosome Segregation , Chromosomes/genetics , Chromosomes/physiology , Computer Simulation , Female , Genetics, Population/methods , Homologous Recombination/genetics , Humans , Solanum lycopersicum/genetics , Male , Meiosis/genetics , Recombination, Genetic/genetics , Synaptonemal Complex
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38513632

ABSTRACT

Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.


Subject(s)
Chromosomes , Genomics , Male , Animals , Mice , Alleles
3.
Trends Genet ; 38(5): 422-425, 2022 05.
Article in English | MEDLINE | ID: mdl-34772523

ABSTRACT

Germ cells reflect the evolutionary history and future potential of a species. Understanding how the genome is organised in gametocytes is fundamental to understanding fertility and its impact on genetic diversity and evolution of species. Here, we explore principles of chromatin remodelling during the formation of germ cells and how these are affected by genome reshuffling.


Subject(s)
Chromatin Assembly and Disassembly , Germ Cells , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Fertility/genetics , Genome
4.
Bioessays ; 45(2): e2200123, 2023 02.
Article in English | MEDLINE | ID: mdl-36529688

ABSTRACT

The molecular mechanism of temperature-dependent sex determination (TSD) is a long-standing mystery. How is the thermal signal sensed, captured and transduced to regulate key sex genes? Although there is compelling evidence for pathways via which cells capture the temperature signal, there is no known mechanism by which cells transduce those thermal signals to affect gene expression. Here we propose a novel hypothesis we call 3D-TSD (the three dimensions of thermolabile sex determination). We postulate that the genome has capacity to remodel in response to temperature by changing 3D chromatin conformation, perhaps via temperature-sensitive transcriptional condensates. This could rewire enhancer-promoter interactions to alter the expression of key sex-determining genes. This hypothesis can accommodate monogenic or multigenic thermolabile sex-determining systems, and could be combined with upstream thermal sensing and transduction to the epigenome to commit gonadal fate.


Subject(s)
Gonads , Sex Determination Processes , Sex Determination Processes/genetics , Chromatin , Temperature , Promoter Regions, Genetic , Sex Ratio
5.
PLoS Genet ; 18(2): e1010040, 2022 02.
Article in English | MEDLINE | ID: mdl-35130272

ABSTRACT

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Subject(s)
Chromosome Pairing/physiology , Sex Chromosomes/physiology , Telomere/physiology , Animals , Macropodidae/genetics , Marsupialia/genetics , Meiosis/genetics , Meiosis/physiology , Meiotic Prophase I/physiology , Opossums/genetics , Sex Chromosomes/genetics , Telomere/genetics , X Chromosome/genetics , Y Chromosome/genetics
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725164

ABSTRACT

Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.


Subject(s)
Biological Evolution , Chordata/genetics , Chromosomes, Mammalian , Genome , Animals , Base Sequence , Conserved Sequence
7.
Trends Genet ; 36(10): 728-738, 2020 10.
Article in English | MEDLINE | ID: mdl-32773168

ABSTRACT

The Y has been described as a wimpy degraded relic of the X, with imminent demise should it lose sex-determining function. Why then has it persisted in almost all mammals? Here we present a novel mechanistic explanation for its evolutionary perseverance: the persistent Y hypothesis. The Y chromosome bears genes that act as their own judge, jury, and executioner in the tightly regulated meiotic surveillance pathways. These executioners are crucial for successful meiosis, yet need to be silenced during the meiotic sex chromosome inactivation window, otherwise germ cells die. Only rare transposition events to the X, where they remain subject to obligate meiotic silencing, are heritable, posing strong evolutionary constraint for the Y chromosome to persist.


Subject(s)
Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Genes , Germ Cells/physiology , Meiosis , X Chromosome Inactivation , Germ Cells/cytology , Humans
8.
Heredity (Edinb) ; 129(1): 22-30, 2022 07.
Article in English | MEDLINE | ID: mdl-35459933

ABSTRACT

Sex-linked inheritance is a stark exception to Mendel's Laws of Heredity. Here we discuss how the evolution of heteromorphic sex chromosomes (mainly the Y) has been shaped by the intricacies of the meiotic programme. We propose that persistence of Y chromosomes in distantly related mammalian phylogroups can be explained in the context of pseudoautosomal region (PAR) size, meiotic pairing strategies, and the presence of Y-borne executioner genes that regulate meiotic sex chromosome inactivation. We hypothesise that variation in PAR size can be an important driver for the evolution of recombination frequencies genome wide, imposing constraints on Y fate. If small PAR size compromises XY segregation during male meiosis, the stress of producing aneuploid gametes could drive function away from the Y (i.e., a fragile Y). The Y chromosome can avoid fragility either by acquiring an achiasmatic meiotic XY pairing strategy to reduce aneuploid gamete production, or gain meiotic executioner protection (a persistent Y). Persistent Ys will then be under strong pressure to maintain high recombination rates in the PAR (and subsequently genome wide), as improper segregation has fatal consequences for germ cells. In the event that executioner protection is lost, the Y chromosome can be maintained in the population by either PAR rejuvenation (extension by addition of autosome material) or gaining achiasmatic meiotic pairing, the alternative is Y loss. Under this dynamic cyclic evolutionary scenario, understanding the meiotic programme in vertebrate and invertebrate species will be crucial to further understand the plasticity of the rise and fall of heteromorphic sex chromosomes.


Subject(s)
Meiosis , Sex Chromosomes , Aneuploidy , Animals , Male , Mammals/genetics , Meiosis/genetics , Sex Chromosomes/genetics , Y Chromosome
9.
Mol Biol Evol ; 36(8): 1686-1700, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31004162

ABSTRACT

One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein-DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


Subject(s)
Evolution, Molecular , Histone-Lysine N-Methyltransferase/genetics , Mice/genetics , Animals , Genetic Variation , Heterozygote , Phylogeography , Portugal , Selection, Genetic , Spain
10.
Hum Mol Genet ; 26(3): 567-581, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28025331

ABSTRACT

The growing catalogue of structural variants in humans often overlooks inversions as one of the most difficult types of variation to study, even though they affect phenotypic traits in diverse organisms. Here, we have analysed in detail 90 inversions predicted from the comparison of two independently assembled human genomes: the reference genome (NCBI36/HG18) and HuRef. Surprisingly, we found that two thirds of these predictions (62) represent errors either in assembly comparison or in one of the assemblies, including 27 misassembled regions in HG18. Next, we validated 22 of the remaining 28 potential polymorphic inversions using different PCR techniques and characterized their breakpoints and ancestral state. In addition, we determined experimentally the derived allele frequency in Europeans for 17 inversions (DAF = 0.01-0.80), as well as the distribution in 14 worldwide populations for 12 of them based on the 1000 Genomes Project data. Among the validated inversions, nine have inverted repeats (IRs) at their breakpoints, and two show nucleotide variation patterns consistent with a recurrent origin. Conversely, inversions without IRs have a unique origin and almost all of them show deletions or insertions at the breakpoints in the derived allele mediated by microhomology sequences, which highlights the importance of mechanisms like FoSTeS/MMBIR in the generation of complex rearrangements in the human genome. Finally, we found several inversions located within genes and at least one candidate to be positively selected in Africa. Thus, our study emphasizes the importance of careful analysis and validation of large-scale genomic predictions to extract reliable biological conclusions.


Subject(s)
Chromosome Inversion/genetics , Genome, Human/genetics , Molecular Sequence Annotation , Sequence Inversion/genetics , Evolution, Molecular , Humans , Polymorphism, Genetic , Selection, Genetic/genetics , Sequence Analysis, DNA
11.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23823723

ABSTRACT

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Subject(s)
Genetic Variation , Hominidae/genetics , Africa , Animals , Animals, Wild/genetics , Animals, Zoo/genetics , Asia, Southeastern , Evolution, Molecular , Gene Flow/genetics , Genetics, Population , Genome/genetics , Gorilla gorilla/classification , Gorilla gorilla/genetics , Hominidae/classification , Humans , Inbreeding , Pan paniscus/classification , Pan paniscus/genetics , Pan troglodytes/classification , Pan troglodytes/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Population Density
12.
Chromosoma ; 126(5): 615-631, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28101670

ABSTRACT

Homologous chromosomes exchange genetic information through recombination during meiosis, a process that increases genetic diversity, and is fundamental to sexual reproduction. In an attempt to shed light on the dynamics of mammalian recombination and its implications for genome organization, we have studied the recombination characteristics of 112 individuals belonging to 28 different species in the family Bovidae. In particular, we analyzed the distribution of RAD51 and MLH1 foci during the meiotic prophase I that serve, respectively, as proxies for double-strand breaks (DSBs) which form in early stages of meiosis and for crossovers. In addition, synaptonemal complex length and meiotic DNA loop size were estimated to explore how genome organization determines DSBs and crossover patterns. We show that although the number of meiotic DSBs per cell and recombination rates observed vary between individuals of the same species, these are correlated with diploid number as well as with synaptonemal complex and DNA loop sizes. Our results illustrate that genome packaging, DSB frequencies, and crossover rates tend to be correlated, while meiotic chromosomal axis length and DNA loop size are inversely correlated in mammals. Moreover, axis length, DSB frequency, and crossover frequencies all covary, suggesting that these correlations are established in the early stages of meiosis.


Subject(s)
Chromosomes, Mammalian/ultrastructure , Meiosis , Recombination, Genetic , Ruminants/genetics , Synaptonemal Complex/ultrastructure , Animals , Chromosomes, Mammalian/metabolism , DNA Breaks, Double-Stranded , Male , Mice , MutL Protein Homolog 1 , Rad51 Recombinase , Ruminants/metabolism , Synaptonemal Complex/metabolism
13.
Chromosoma ; 125(2): 337-51, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26525972

ABSTRACT

Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.


Subject(s)
Germ Cells/metabolism , Mammals/genetics , Telomere/genetics , Animals , Germ Cells/cytology , Homeostasis , Humans , Mammals/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism
14.
Chromosome Res ; 24(3): 325-38, 2016 09.
Article in English | MEDLINE | ID: mdl-27136937

ABSTRACT

The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation.


Subject(s)
Chromosome Pairing/genetics , Chromosome Segregation/genetics , Meiosis/genetics , Ruminants/genetics , Sex Chromosomes/genetics , Translocation, Genetic , Animals , Chromosome Painting , Fluorescent Antibody Technique , In Situ Hybridization, Fluorescence
15.
Bioessays ; 37(5): 479-88, 2015 May.
Article in English | MEDLINE | ID: mdl-25739389

ABSTRACT

Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders.


Subject(s)
Biological Evolution , Genome/genetics , Animals , DNA Shuffling , Genetic Speciation , Humans , Selection, Genetic/genetics
16.
PLoS Genet ; 10(3): e1004208, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24651690

ABSTRACT

In recent years different types of structural variants (SVs) have been discovered in the human genome and their functional impact has become increasingly clear. Inversions, however, are poorly characterized and more difficult to study, especially those mediated by inverted repeats or segmental duplications. Here, we describe the results of a simple and fast inverse PCR (iPCR) protocol for high-throughput genotyping of a wide variety of inversions using a small amount of DNA. In particular, we analyzed 22 inversions predicted in humans ranging from 5.1 kb to 226 kb and mediated by inverted repeat sequences of 1.6-24 kb. First, we validated 17 of the 22 inversions in a panel of nine HapMap individuals from different populations, and we genotyped them in 68 additional individuals of European origin, with correct genetic transmission in ∼ 12 mother-father-child trios. Global inversion minor allele frequency varied between 1% and 49% and inversion genotypes were consistent with Hardy-Weinberg equilibrium. By analyzing the nucleotide variation and the haplotypes in these regions, we found that only four inversions have linked tag-SNPs and that in many cases there are multiple shared SNPs between standard and inverted chromosomes, suggesting an unexpected high degree of inversion recurrence during human evolution. iPCR was also used to check 16 of these inversions in four chimpanzees and two gorillas, and 10 showed both orientations either within or between species, providing additional support for their multiple origin. Finally, we have identified several inversions that include genes in the inverted or breakpoint regions, and at least one disrupts a potential coding gene. Thus, these results represent a significant advance in our understanding of inversion polymorphism in human populations and challenge the common view of a single origin of inversions, with important implications for inversion analysis in SNP-based studies.


Subject(s)
Chromosome Inversion/genetics , Evolution, Molecular , Inverted Repeat Sequences/genetics , Segmental Duplications, Genomic/genetics , Animals , Chromosome Mapping , Genome, Human , HapMap Project , Humans , Pan troglodytes/genetics , Polymorphism, Genetic
17.
Cytogenet Genome Res ; 150(1): 1-16, 2016.
Article in English | MEDLINE | ID: mdl-27926907

ABSTRACT

Meiotic recombination is a process that increases genetic diversity and is fundamental for sexual reproduction. Determining by which mechanisms genetic variation is generated and maintained across different phylogenetic groups provides the basis for our understanding of biodiversity and evolution. In this review, we go through different aspects of this essential phenomenon, paying special attention to mammals. We provide a comprehensive view on the organization of meiotic chromosomes and the mechanisms involved in the formation and genomic distribution of recombination hotspots, focusing on the factors influencing the formation and repair of the massive amount of self-induced DNA breaks in early stages of meiosis. At the same time, we discuss the genetic and mechanistic factors that influence recombination landscapes in mammals, as reflected by several layers of regulation. These factors include the selective forces that affect the DNA sequence itself, which can be modulated by genome reshuffling and the evolutionary history of each taxon, and the forces that control how the DNA is packaged into chromosomes during meiosis.


Subject(s)
Chromosomes, Mammalian/genetics , Evolution, Molecular , Homologous Recombination/genetics , Mammals/genetics , Meiosis/genetics , Animals , Crossing Over, Genetic/genetics , Humans
18.
BMC Genomics ; 16: 4, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25612459

ABSTRACT

BACKGROUND: The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds. RESULTS: A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed. CONCLUSIONS: By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence.


Subject(s)
Cucumis melo/genetics , Genome, Plant , Polymorphism, Single Nucleotide , Alleles , Chromosome Mapping , Genetic Linkage , In Situ Hybridization, Fluorescence , Karyotyping , RNA, Ribosomal/genetics , RNA, Ribosomal, 5S/genetics , Recombination, Genetic
19.
BMC Genomics ; 15: 530, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24969235

ABSTRACT

BACKGROUND: By reshuffling genomes, structural genomic reorganizations provide genetic variation on which natural selection can work. Understanding the mechanisms underlying this process has been a long-standing question in evolutionary biology. In this context, our purpose in this study is to characterize the genomic regions involved in structural rearrangements between human and macaque genomes and determine their influence on meiotic recombination as a way to explore the adaptive role of genome shuffling in mammalian evolution. RESULTS: We first constructed a highly refined map of the structural rearrangements and evolutionary breakpoint regions in the human and rhesus macaque genomes based on orthologous genes and whole-genome sequence alignments. Using two different algorithms, we refined the genomic position of known rearrangements previously reported by cytogenetic approaches and described new putative micro-rearrangements (inversions and indels) in both genomes. A detailed analysis of the rhesus macaque genome showed that evolutionary breakpoints are in gene-rich regions, being enriched in GO terms related to immune system. We also identified defense-response genes within a chromosome inversion fixed in the macaque lineage, underlying the relevance of structural genomic changes in evolutionary and/or adaptation processes. Moreover, by combining in silico and experimental approaches, we studied the recombination pattern of specific chromosomes that have suffered rearrangements between human and macaque lineages. CONCLUSIONS: Our data suggest that adaptive alleles - in this case, genes involved in the immune response - might have been favored by genome rearrangements in the macaque lineage.


Subject(s)
Chromosome Inversion , Chromosomes, Mammalian/genetics , Evolution, Molecular , Macaca mulatta/genetics , Adaptation, Biological , Animals , Cells, Cultured , Cercocebus/genetics , Chromosome Breakpoints , Female , Genome , Male , Multigene Family , Recombination, Genetic , Spermatocytes/physiology , Tandem Repeat Sequences , beta-Defensins/genetics
20.
Mol Biol Evol ; 30(4): 853-64, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23204393

ABSTRACT

A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.


Subject(s)
Chromosomes, Human/genetics , Genetic Speciation , Genome, Human , Pan troglodytes/genetics , Recombination, Genetic , Animals , Base Sequence , Chromosome Breakpoints , Chromosome Inversion , Evolution, Molecular , Gene Rearrangement , Humans , Models, Genetic , Pongo/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL