Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Cell ; 82(18): 3333-3349.e9, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35981542

ABSTRACT

The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.


Subject(s)
Chromatin , Retinoblastoma Protein , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Promoter Regions, Genetic , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Transcription Factor AP-1/genetics
2.
Mol Cell ; 73(5): 985-1000.e6, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30711375

ABSTRACT

Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.


Subject(s)
Breast Neoplasms/metabolism , Retinoblastoma Protein/metabolism , Signal Transduction , Breast Neoplasms/genetics , Cell Line, Tumor , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mutation , Oxidative Phosphorylation , Phosphorylation , Protein Binding , Proteomics/methods , Retinoblastoma Protein/genetics , Signal Transduction/genetics , Transcription, Genetic
3.
Cancer Res ; 84(8): 1188-1190, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38616658

ABSTRACT

Residual cancer cells persist even after targeted therapies, serving as a reservoir for the subsequent acquisition of genetic alterations that lead to acquired drug resistance and tumor relapse. These initial drug-tolerant persisters (DTP) are phenotypically heterogenous with transient phenotypes attributed to epigenetic, metabolic, and cell-cycle changes. DTPs are responsible for the inevitable relapse seen in EGFR-mutant non-small cell lung cancer (NSCLC) despite high initial response to tyrosine kinase inhibitor (TKI) treatment. While past in vitro studies identified diverse drivers of drug-tolerant persistence to EGFR TKIs in NSCLC, the resultant phenotypic plasticity is not well understood and in vivo models of persistence are lacking. In this issue of Cancer Research, Hu and colleagues used patient-derived xenograft models of EGFR-mutant lung cancer treated with the third-generation TKI osimertinib to investigate mechanisms of persistence at the time of maximal response. Using bulk and single-cell RNA sequencing, the authors identified a DTP transcriptional cluster mediated by the key neuroendocrine lineage transcription factor ASCL1, which triggers an epithelial-to-mesenchymal transition transcriptional program. ASCL1 overexpression increased osimertinib tolerance in vitro as well, apparently independent of its role in neuroendocrine differentiation. Interestingly, the ability of ASCL1 to induce persistence was context dependent as this occurred only in epigenetically permissive cells. Overall, these findings contribute to our understanding of DTP heterogeneity seen after osimertinib treatment and provide insights into potential therapeutic targets. See related article by Hu et al., p. 1303.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neoplasm Recurrence, Local , Recurrence , ErbB Receptors/genetics
4.
Oncogene ; 43(19): 1431-1444, 2024 May.
Article in English | MEDLINE | ID: mdl-38485737

ABSTRACT

MET amplification/mutations are important targetable oncogenic drivers in NSCLC, however, acquired resistance is inevitable and the majority of patients with targetable MET alterations fail to respond to MET tyrosine kinase inhibitors (TKIs). Furthermore, MET amplification is among the most common mediators of TKI resistance. As such, novel therapies to target MET pathway and overcome MET TKI resistance are clearly needed. Here we show that the epithelial-mesenchymal transition (EMT) transcription factor, TWIST1 is a key downstream mediator of HGF/MET induced resistance through suppression of p27 and targeting TWIST1 can overcome resistance. We found that TWIST1 is overexpressed at the time of TKI resistance in multiple MET-dependent TKI acquired resistance PDX models. We have shown for the first time that MET directly stabilized the TWIST protein leading to TKI resistance and that TWIST1 was required for MET-driven lung tumorigenesis as well as could induce MET TKI resistance when overexpressed. TWIST1 mediated MET TKI resistance through suppression of p27 expression and genetic or pharmacologic inhibition of TWIST1 overcame TKI resistance in vitro and in vivo. Our findings suggest that targeting TWIST1 may be an effective therapeutic strategy to overcome resistance in MET-driven NSCLC as well as in other oncogene driven subtypes in which MET amplification is the resistance mechanism.


Subject(s)
Drug Resistance, Neoplasm , Hepatocyte Growth Factor , Lung Neoplasms , Nuclear Proteins , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Twist-Related Protein 1 , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL